Turn off MathJax
Article Contents
Jun Hyun Kim, Ja Yeon Lee, Eung Soo Kim, Myung Yung Jeong. Electric field enhancement of coupled plasmonic nanostructures for optical amplification[J]. PhotoniX. doi: 10.1186/s43074-023-00086-4
Citation: Jun Hyun Kim, Ja Yeon Lee, Eung Soo Kim, Myung Yung Jeong. Electric field enhancement of coupled plasmonic nanostructures for optical amplification[J]. PhotoniX. doi: 10.1186/s43074-023-00086-4

Electric field enhancement of coupled plasmonic nanostructures for optical amplification

doi: 10.1186/s43074-023-00086-4
Funds:  This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2B5B01002377).and Following are results of a study on the “Leaders in Industry-university Cooperation 3.0” Project, supported by the Ministry of Education and National Research Foundation of Korea.
  • Received Date: 2022-08-23
  • Accepted Date: 2023-02-01
  • Rev Recd Date: 2023-01-28
  • Available Online: 2023-02-08
  • Plasmonic effects that enhance electric fields and amplify optical signals are crucial for improving the resolution of optical imaging systems. In this paper, a metal-based plasmonic nanostructure (MPN) is designed to increase the resolution of an optical imaging system by amplifying a specific signal while producing a plasmonic effect via a dipole nanoantenna (DN) and grating nanostructure (GN), which couple the electric field to be focused at the center of the unit cell. We confirmed that the MPN enhances electric fields 15 times more than the DN and GN, enabling the acquisition of finely resolved optical signals. The experiments confirmed that compared with the initial laser intensity, the MPN, which was fabricated by nanoimprint lithography, enhanced the optical signal of the laser by 2.24 times. Moreover, when the MPN was applied in two optical imaging systems, an indistinguishable signal that was similar to noise in original was distinguished by amplifying the optical signal as 106 times in functional near-infrared spectroscopy(fNIRS), and a specific wavelength was enhanced in fluorescence image. Thus, the incorporation of this nanostructure increased the utility of the collected data and could enhance optical signals in optics, bioimaging, and biology applications.
  • loading
  • [1]
    Shanthil M, Thomas R, Swathi RS, George TK. Ag@SiO2 Core-Shell nanostructures: distance-dependent Plasmon coupling and SERS investigation. J Phys Chem Lett. 2012;3(11):1459–64.
    [2]
    Lee SY, Hung L, Lang GS, Cornett JE, Mayergoyz ID, Rabin O. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano. 2010;4(10):5763–72.
    [3]
    Mahigir A, Chang TW, Behnam A, Liu GL, Gartia MR, Veronis G. Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water. Sci Rep. 2017;7(1):14044.
    [4]
    Bagheri S, Weber K, Gissibl T, Weiss T, Neubrech F, Giessen H. Fabrication of square-centimeter Plasmonic Nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement. ACS Photonics. 2015;2(6):779–86.
    [5]
    Chae J, Lahiri B, Centrone A. Engineering near-field SEIRA enhancements in Plasmonic resonators. ACS Photonics. 2016;3(1):87–95.
    [6]
    Cui X, Tawa K, Hori H, Nishii J. Tailored Plasmonic gratings for enhanced fluorescence detection and microscopic imaging. Adv Funct Mater. 2010;20(4):546–53.
    [7]
    Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T, et al. Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules. Small. 2012;8(6):892–900 786.
    [8]
    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica. 2017;4(1):139–52.
    [9]
    High AA, Devlin RC, Dibos A, Polking M, Wild DS, Perczel J, et al. Visible-frequency hyperbolic metasurface. Nature. 2015;522(7555):192–6.
    [10]
    Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009.
    [11]
    Liu Z, Wang Q, Xie Y, Zhu Y. High-efficiency control of transmitted light with a three-layered plasmonic metasurface. J Phys D Appl Phys. 2016;49(47):475101.
    [12]
    Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 2015;9(2):195–213.
    [13]
    Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics. 2009;3(5):287–91.
    [14]
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9(3):193–204.
    [15]
    Ahmadivand A, Sinha R, Pala N. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers. AIP Adv. 2016;6(6):065102.
    [16]
    Cubukcu E, Kort EA, Crozier KB, Capasso F. Plasmonic laser antenna. Appl Phys Lett. 2006;89(9):093120.
    [17]
    Novotny L, van Hulst N. Antennas for light. Nat Photonics. 2011;5(2):83–90.
    [18]
    Muhlschlegel P, Eisler HJ, Martin OJ, Hecht B, Pohl DW. Resonant optical antennas. Science. 2005;308(5728):1607–9.
    [19]
    Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett. 2007;98(26):266802.
    [20]
    Crozier KB, Sundaramurthy A, Kino GS, Quate CF. Optical antennas: resonators for local field enhancement. J Appl Phys. 2003;94(7):4632–42.
    [21]
    Grober RD, Schoelkopf RJ, Prober DE. Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett. 1997;70(11):1354–6.
    [22]
    Guo H, Meyrath TP, Zentgraf T, Liu N, Fu L, Schweizer H, et al. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt Express. 2008;16(11):7756–66.
    [23]
    Abb M, Wang Y, de Groot CH, Muskens OL. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat Commun. 2014;5:4869.
    [24]
    Berkovitch N, Ginzburg P, Orenstein M. Nano-plasmonic antennas in the near infrared regime. J Phys Condens Matter. 2012;24(7):073202.
    [25]
    Ishi T, Fujikata J, Makita K, Baba T, Ohashi K. Si Nano-photodiode with a surface Plasmon antenna. Jpn J Appl Phys. 2005;44(12):L364–L6.
    [26]
    Mironov EG, Khaleque A, Liu L, Maksymov IS, Hattori HT. Enhancing weak optical signals using a Plasmonic Yagi—Uda Nanoantenna Array. IEEE Photon Technol Lett. 2014;26(22):2236–9.
    [27]
    Hofmann HF, Kosako T, Kadoya Y. Design parameters for a nano-optical Yagi–Uda antenna. New J Phys. 2007;9(7):217.
    [28]
    Kosako T, Kadoya Y, Hofmann HF. Directional control of light by a nano-optical Yagi–Uda antenna. Nat Photonics. 2010;4(5):312–5.
    [29]
    Biagioni P, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys. 2012;75(2):024402.
    [30]
    Cao L, Park JS, Fan P, Clemens B, Brongersma ML. Resonant germanium nanoantenna photodetectors. Nano Lett. 2010;10(4):1229–33.
    [31]
    Tahir AA, Schulz SA, De Leon I, Boyd RW. Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas. J Optics. 2017;19(3):035001.
    [32]
    Gupta N, Dhawan A. Bowtie nanoantenna driven by a Yagi-Uda nanoantenna: a device for plasmon-enhanced light matter interactions. OSA. Continuum. 2021;4(11):2970–9.
    [33]
    Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organ Res Methods. 2016;22(1):46–68.
    [34]
    Bohn BJ, Schnell M, Kats MA, Aieta F, Hillenbrand R, Capasso F. Near-field imaging of phased Array Metasurfaces. Nano Lett. 2015;15(6):3851–8.
    [35]
    Li J, Fattal D, Li Z. Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy. Appl Phys Lett. 2009;94(26):263114.
    [36]
    Zu S, Bao Y, Fang Z. Planar plasmonic chiral nanostructures. Nanoscale. 2016;8(7):3900–5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (249) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return