Turn off MathJax
Article Contents
Jun Ye, Xiaoya Ma, Yang Zhang, Jiangming Xu, Hanwei Zhang, Tianfu Yao, Jinyong Leng, Pu Zhou. From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber[J]. PhotoniX. doi: 10.1186/s43074-021-00037-x
Citation: Jun Ye, Xiaoya Ma, Yang Zhang, Jiangming Xu, Hanwei Zhang, Tianfu Yao, Jinyong Leng, Pu Zhou. From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber[J]. PhotoniX. doi: 10.1186/s43074-021-00037-x

From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber

doi: 10.1186/s43074-021-00037-x
Funds:

National Natural Science Foundation of China (NSFC) (61905284, 62035015, 62061136013).

  • Received Date: 2021-05-27
  • Accepted Date: 2021-07-15
  • Available Online: 2021-08-04
  • Interplay between dispersion and nonlinearity in optical fibers is a fundamental research topic of nonlinear fiber optics. Here we numerically and experimentally investigate an incoherent continuous-wave (CW) optical field propagating in the fiber with normal dispersion, and introduce a distinctive spectral evolution that differs from the previous reports with coherent mode-locked fiber lasers and partially coherent Raman fiber lasers [Nat. Photonics 9, 608 (2015).]. We further reveal that the underlying physical mechanism is attributed to a novel interplay between group-velocity dispersion (GVD), self-phase modulation (SPM) and inverse four-wave mixing (IFWM), in which SPM and GVD are responsible for the first spectral broadening, while the following spectral recompression is due to the GVD-assisted IFWM, and the eventual stationary spectrum is owing to the dominant contribution of GVD effect. We believe this work can not only expand the light propagation in the fiber to a more general case and help advance the physical understanding of light propagation with different statistical properties, but also benefit the applications in sensing, telecommunications and fiber lasers.
  • loading
  • [1]
    Ellis AD, McCarthy ME, Al Khateeb MAZ, Sorokina M, Doran NJ. Performance limits in optical communications due to fiber nonlinearity. Adv Opt Photonics. 2017;9:429–503.
    [2]
    Agrawal GP. Nonlinear fiber optics. Fifth edition. Amsterdam: Elsevier; 2013.
    [3]
    Song J, Ma P, Ren S, Zhang S, Liu W, Xiao H, et al. 2 kW narrow-linewidth Yb-Raman fiber amplifier. Opt Lett. 2021;46:2404–7.
    [4]
    Jiang X, Joly NY, Finger MA, Babic F, Wong GKL, Travers JC, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photonics. 2015;9:133–9.
    [5]
    Song Y, Shi X, Wu C, Tang D, Zhang H. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev. 2019;6:21313.
    [6]
    Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys. 2006;78:1135–84.
    [7]
    Randoux S, Gustave F, Suret P, El G. Optical random Riemann waves in integrable turbulence. Phys Rev Lett. 2017;118:233901.
    [8]
    Dudley JM, Taylor JR. Ten years of nonlinear optics in photonic crystal fibre. Nat Photonics. 2009;3:85–90.
    [9]
    Bao X, Chen L. Recent progress in distributed fiber optic sensors. Sensors. 2012;12:8601–39.
    [10]
    Turitsyn SK, Bale BG, Fedoruk MP. Dispersion-managed solitons in fibre systems and lasers. Phys Rep. 2012;521:135–203.
    [11]
    Reeves WH, Skryabin DV, Biancalana F, Knight JC, Russell PS, Omenetto FG, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature. 2003;424:511–5.
    [12]
    Fermann ME, Kruglov VI, Thomsen BC, Dudley JM, Harvey JD. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys Rev Lett. 2000;84:6010–3.
    [13]
    Armaroli A, Conti C, Biancalana F. Rogue solitons in optical fibers: a dynamical process in a complex energy landscape? Optica. 2015;2:497–504.
    [14]
    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX. 2021;2:4.
    [15]
    Liu M, Wei ZW, Li H, Li TJ, Luo AP, Xu WC, et al. Visualizing the “invisible” soliton pulsation in an ultrafast laser. Laser Photonics Rev. 2020;14:1900317.
    [16]
    Zhang H, Tang DY, Zhao LM, Xiang N. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt Express. 2008;16:12618–23.
    [17]
    Renninger WH, Wise FW. Optical solitons in graded-index multimode fibres. Nat Commun. 2013;4:1719.
    [18]
    Peng J, Boscolo S, Zhao Z, Zeng H. Breathing dissipative solitons in mode-locked fiber lasers. Sci Adv. 2019;5:eaax1110.
    [19]
    Xu J, Wu J, Ye J, Song J, Yao B, Zhang H, et al. Optical rogue wave in random fiber laser. Photonics Res. 2020;8:1–7.
    [20]
    Song Y, Wang Z, Wang C, Panajotov K, Zhang H. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv photonics. 2020;2:24001.
    [21]
    Weidner P, Penzkofer A. Spectral broadening of picosecond laser pulses in optical fibres. Opt Quant Electron. 1993;25:1–25.
    [22]
    Eftekhar MA, Sanjabi-Eznaveh Z, Lopez-Aviles HE, Benis S, Antonio-Lopez JE, Kolesik M, et al. Accelerated nonlinear interactions in graded-index multimode fibers. Nat Commun. 2019;10:1638.
    [23]
    Barviau B, Randoux S, Suret P. Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber. Opt Lett. 2006;31:1696.
    [24]
    Liu W, Ma P, Zhou P, Jiang Z. Spectral property optimization for a narrow-band-filtered superfluorescent fiber source. Laser Phys Lett. 2018;15:25103.
    [25]
    Mussot A, Lantz E, Maillotte H, Sylvestre T, Finot C, Pitois S. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt Express. 2004;12:2838–43.
    [26]
    Suret P, Picozzi A, Randoux S. Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers. Opt Express. 2011;19:17852–63.
    [27]
    Arun S, Choudhury V, Balaswamy V, Supradeepa VR. Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers. Opt Lett. 2020;45:1172–5.
    [28]
    Kobtsev S, Smirnov S. Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Opt Express. 2005;13:6912–8.
    [29]
    Soh DBS, Koplow JP, Moore SW, Schroder KL, Hsu WL. The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers. Opt Express. 2010;18:22393–405.
    [30]
    Li Q, Zhang H, Shen X, Hao H, Gong M. Phenomenological model for spectral broadening of incoherent light in fibers via self-phase modulation and dispersion. J Opt. 2016;18:115503.
    [31]
    Churkin DV, Kolokolov IV, Podivilov EV, Vatnik ID, Nikulin MA, Vergeles SS, et al. Wave kinetics of random fibre lasers. Nat Commun. 2015;6:6214.
    [32]
    Turitsyn SK, Bednyakova AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics. 2015;9:608–14.
    [33]
    Goodman JW. Statistical Optics. 2nd edition. John Wiley & Sons, Inc; 2015.
    [34]
    Kelleher EJR, Travers JC, Popov SV, Taylor JR. Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. J Opt Soc Am B. 2012;29:502–11.
    [35]
    Castelló-Lurbe D, Vermeulen N, Silvestre E. Towards an analytical framework for tailoring supercontinuum generation. Opt Express. 2016;24:26629–45.
    [36]
    Pinault SC, Potasek MJ. Frequency broadening by self-phase modulation in optical fibers. J Opt Soc Am B. 1985;2:1318–9.
    [37]
    Kelleher EJR. Pump wave coherence, modulation instability and their effect on continuous-wave supercontinua. Opt Fiber Technol. 2012;18:268–82.
    [38]
    Ye J, Xu J, Zhang Y, Song J, Leng J, Zhou P. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source. J Lightwave Technol. 2019;37:3113–8.
    [39]
    Ropp C, Bachelard N, Barth D, Wang Y, Zhang X. Dissipative self-organization in optical space. Nat Photonics. 2018;12:739–43.
    [40]
    de Araujo MT, Da Cruz HR, Gouveia-Neto AS. Self-phase modulation of incoherent pulses in single-mode optical fibers. J Opt Soc Am B. 1991;8:2094–6.
    [41]
    Churkin DV, Gorbunov OA, Smirnov SV. Extreme value statistics in Raman fiber lasers. Opt Lett. 2011;36:3617–9.
    [42]
    An Y, Huang L, Li J, Leng J, Yang L, Zhou P. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt Express. 2019;27:10127–37.
    [43]
    Turitsyn SK, Bednyakova AE, Fedoruk MP, Latkin AI, Fotiadi AA, Kurkov AS, et al. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. Opt Express. 2011;19:8394–405.
    [44]
    Travers JC, Popov SV, Taylor JR. A new model for CW supercontinuum generation. In: 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. 2008;paper CMT3. https://doi.org/10.1109/CLEO.2008.4551286.
    [45]
    Churkin DV, Smirnov SV, Podivilov EV. Statistical properties of partially coherent cw fiber lasers. Opt Lett. 2010;35:3288–90.
    [46]
    Randoux S, Dalloz N, Suret P. Intracavity changes in the field statistics of Raman fiber lasers. Opt Lett. 2011;36:790–2.
    [47]
    Suret P, Koussaifi RE, Tikan A, Evain C, Randoux S, Szwaj C, et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun. 2016;7:13136.
    [48]
    Vanholsbeeck F, Martin-Lopez S, Gonzalez-Herraez M, Coen S. The role of pump incoherence in continuous-wave supercontinuum generation. Opt Express. 2005;13:6615–25.
    [49]
    Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, et al. Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys Rep. 2014;542:1–132.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (319) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return