| [1] | Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4. | 
		
				| [2] | Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10:308–12. | 
		
				| [3] | Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retroreflector. Nat Photon. 2017;11:415–20. | 
		
				| [4] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6. | 
		
				| [5] | Rubin NA, D’Aversa G, Chevalier P, Shi Z, Chen WT, Capasso F. Matrix fourier optics enables a compact full-Stokes polarization camera. Science. 2019;365:eaax1839. | 
		
				| [6] | Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun. 2013;4:2807. | 
		
				| [7] | Gopakumar M, Lee GY, Choi S, Chao B, Peng Y, Kim J, et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature. 2024;629:791–7. | 
		
				| [8] | Chen Q, Qu G, Yin J, Wang Y, Ji Z, Yang W, et al. Highly efficient vortex generation at the nanoscale. Nat Nanotechnol. 2024;19(7):1000–6. | 
		
				| [9] | Xiong B, Liu Y, Xu Y, Deng L, Chen CW, Wang JN, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science. 2023;379(6629):294–9. | 
		
				| [10] | Barulin A, Kim Y, Oh DK, Jang J, Park H, Rho J, et al. Dual-wavelength metalens enables epi-fluorescence detection from single molecules. Nat Commun. 2024;15(1):26. | 
		
				| [11] | Li Z, Pestourie R, Park JS, Huang YW, Johnson SG, Capasso F. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat Commun. 2022;13(1):2409. | 
		
				| [12] | Kim G, Kim Y, Yun J, Moon SW, Kim S, Kim J, et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat Commun. 2022;13(1):5920. | 
		
				| [13] | Choi E, Kim G, Yun J, Jeon Y, Rho J, Baek SH. 360° structured light with learned metasurfaces. Nat Photon. 2024;18(8):848–55. | 
		
				| [14] | Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photon. 2019;13(6):390–6. | 
		
				| [15] | Kim I, Kim H, Go M, Lee S, Nguyen DD, Kim S, et al. Ultrafast metaphotonic PCR chip with near-perfect absorber. Adv Mater. 2024;36(39):2311931. | 
		
				| [16] | Kim I, Kim H, Han S, Kim J, Kim Y, Eom S, et al. Metasurfaces-driven hyperspectral imaging via multiplexed plasmonic resonance energy transfer. Adv Mater. 2023;35(32):2300229. | 
		
				| [17] | Zhang C, Xue T, Zhang J, Liu L, Xie J, Wang G, et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics. 2022;11(1):101–9. | 
		
				| [18] | Kim J, Kim H, Kang H, Kim W, Chen Y, Choi J, et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat Food. 2024;5(4):293–300. | 
		
				| [19] | Juliano Martins R, Marinov E, Youssef MAB, Kyrou C, Joubert M, Colmagro C, et al. Metasurface-enhanced light detection and ranging technology. Nat Commun. 2022;13(1):5724. | 
		
				| [20] | Pestourie R, Pérez-Arancibia C, Lin Z, Shin W, Capasso F, Johnson SG. Inverse design of large-area metasurfaces. Opt Express. 2018;26(26):33732–47. | 
		
				| [21] | Phan T, Sell D, Wang EW, Doshay S, Edee K, Yang J, et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci Appl. 2019;8(1):48. | 
		
				| [22] | So S, Mun J, Park J, Rho J. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater. 2023;35(43):2206399. | 
		
				| [23] | Chen BH, Wu PC, Su VC, Lai YC, Chu CH, Lee IC, et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 2017;17(10):6345–52. | 
		
				| [24] | Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, et al. All-dielectric metasurface for high-performance structural color. Nat Commun. 2020;11(1):1864. | 
		
				| [25] | Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10(11):937–43. | 
		
				| [26] | Yang JH, Babicheva VE, Yu MW, Lu TC, Lin TR, Chen KP. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano. 2020;14(5):5678–85. | 
		
				| [27] | Russo M, Rigby SE, Caseri W, Stingelin N. Pronounced photochromism of titanium oxide hydrates (hydrous TiO2). J Mater Chem. 2010;20(7):1348–56. | 
		
				| [28] | Russo M, Rigby SE, Caseri W, Stingelin N. Versatile chromism of titanium oxide hydrate/poly (vinyl alcohol) hybrid systems. Adv Mater. 2012;24(22):3015–9. | 
		
				| [29] | Durbin MM, Votta I, Balzer AH, Procházka M, Valentin M, Omastová M, et al. Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers. Polym Int. 2024;73(12):1017–21. | 
		
				| [30] | Kim J, Seong J, Kim W, Lee GY, Kim S, Kim H, et al. Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible. Nat Mater. 2023;22(4):474–81. | 
		
				| [31] | Saleh BEA, Teich MC. Fundamentals of photonics: 2 volume set. 3rd ed. Hoboken: John Wiley & Sons; 2019. | 
		
				| [32] | Kim J, Kim W, Oh DK, Kang H, Kim H, Badloe T, et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci Appl. 2023;12(1):68. | 
		
				| [33] | Kang H, Kim H, Kim K, Rho J. Printable spin-multiplexed metasurfaces for ultraviolet holographic displays. ACS Nano. 2024;18(32):21504–11. | 
		
				| [34] | Kim J, Oh DK, Kim H, Yoon G, Jung C, Kim J, et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photon Rev. 2022;16(8):2200098. | 
		
				| [35] | Einck VJ, Torfeh M, McClung A, Jung DE, Mansouree M, Arbabi A, et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics. 2021;8(8):2400–9. | 
		
				| [36] | Kothari R, Beaulieu MR, Hendricks NR, Li S, Watkins JJ. Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chem Mater. 2017;29(9):3908–18. | 
		
				| [37] | Lai X, Ren Q, Vogelbacher F, Sha WE, Hou X, Yao X, et al. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv Mater. 2022;34(3):2107243. | 
		
				| [38] | Yoon G, Kim K, Huh D, Lee H, Rho J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat Commun. 2020;11(1):2268. | 
		
				| [39] | Yoon G, Kim K, Kim SU, Han S, Lee H, Rho J. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano. 2021;15(1):698–706. | 
		
				| [40] | Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4. Piscataway (NJ): IEEE; 1995. p. 1942–8. | 
		
				| [41] | Kang H, Tanaka T, Duan H, Cao T, Rho J. State-of-the-art micro-and nano-scale photonics research in Asia: devices, fabrication, manufacturing, and applications. Microsyst Nanoeng. 2024;10(1):114. | 
		
				| [42] | Lee C, Chang G, Kim J, Hyun G, Bae G, So S, et al. Concurrent optimization of diffraction fields from binary phase mask for three-dimensional nanopatterning. ACS Photonics. 2022;10(4):919–27. | 
		
				| [43] | Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules. 2000;33(8):3042–9. | 
		
				| [44] | Cao K, Zhu Q, Shan B, Chen R. Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci Rep. 2015;5(1):8470. | 
		
				| [45] | Van Ommen JR, Goulas A. Atomic layer deposition on particulate materials. Mater Today Chem. 2019;14:100183. | 
		
				| [46] | Kim J, Kim Y, Kim W, Oh DK, Kang D, Seong J, et al. 8 ″wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater Today. 2024;73:9–15. | 
		
				| [47] | Yang Y, Kang D, Seong J, Kim K, Kim S, Jung C, et al. Mechanically robust and self-cleanable encapsulated metalens via spin-on-glass packaging. Microsyst Nanoeng. 2025;11(1):118. | 
		
				| [48] | Park JS, Zhang S, She A, Chen WT, Lin P, Yousef KM, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 2019;19(12):8673–82. | 
		
				| [49] | Goodman JW. Introduction to Fourier optics. 3rd ed. Englewood (CO): Roberts and Company Publishers; 2005. | 
		
				| [50] | Kim S, Kim J, Kim K, Jeong M, Rho J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat Commun. 2025;16(1):411. | 
		
				| [51] | Ahn SH, Guo LJ. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano. 2009;3(8):2304–10. | 
		
				| [52] | Leitgeb M, Nees D, Ruttloff S, Palfinger U, Götz J, Liska R, et al. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano. 2016;10(5):4926–41. | 
		
				| [53] | Howell IR, Einck VJ, Nees D, Stadlober B, Watkins JJ. Solvent-free, transparent, high-refractive index ZrO2 nanoparticle composite resin for scalable roll to roll UV-nanoimprint lithography. Opt Laser Technol. 2021;141:107101. | 
		
				| [54] | Badloe T, Kim I, Kim Y, Kim J, Rho J. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci. 2021;8(21):2102646. | 
		
				| [55] | Shalaginov MY, An S, Yang F, Su P, Lyzwa D, Agarwal AM, et al. Single-element diffraction-limited fisheye metalens. Nano Lett. 2020;20(10):7429–37. | 
		
				| [56] | Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater. 2021;33(11):2008157. | 
		
				| [57] | Li Z, Pestourie R, Lin Z, Johnson SG, Capasso F. Empowering metasurfaces with inverse design: principles and applications. ACS Photonics. 2022;9(7):2178–92. | 
		
				| [58] | Huang SH, Su HP, Chen CY, Lin YC, Yang Z, Shi Y, et al. Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering. Nat Commun. 2024;15(1):9658. | 
		
				| [59] | Hassanfiroozi A, Lu YC, Wu PC. Hybrid anapole induced chirality in metasurfaces. Adv Mater. 2024;36(46):2410568. |