| [1] | Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: from concept to function. Chem Rev. 2016;116(7):4318–440. | 
		
				| [2] | Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012;491(7425):574–7. | 
		
				| [3] | Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589(7840):52–8. | 
		
				| [4] | Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78. | 
		
				| [5] | Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics. 2008;2(8):496–500. | 
		
				| [6] | Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong light-matter interactions. ACS Photon. 2017;5(1):24–42. | 
		
				| [7] | Baumberg JJ. Picocavities: a primer. Nano Lett. 2022;22(14):5859–65. | 
		
				| [8] | Wang M, Wang T, Ojambati OS, Duffin TJ, Kang K, Lee T, et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem. 2022;6(10):681–704. | 
		
				| [9] | Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon. 2010;4(2):83–91. | 
		
				| [10] | Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9(3):193–204. | 
		
				| [11] | Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424(6950):824–30. | 
		
				| [12] | Yang YX, Chu JP. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology. 2021;32(47):475504. | 
		
				| [13] | Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, et al. Present and future of surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117. | 
		
				| [14] | Koya AN, Li W. Multifunctional charge transfer plasmon resonance sensors. Nanophotonics. 2023;12(12):2103–13. | 
		
				| [15] | Liu X, Dang A, Li T, Sun Y, Lee TC, Deng W, et al. Plasmonic coupling of Au nanoclusters on a flexible MXene/graphene oxide fiber for ultrasensitive SERS sensing. ACS Sens. 2023;8(3):1287–98. | 
		
				| [16] | Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. Nanoscale. 2020;12(1):58–66. | 
		
				| [17] | Kang G, Hu S, Guo C, Arul R, Sibug-Torres SM, Baumberg JJ. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat Commun. 2024;15(1):9220. | 
		
				| [18] | Ma XC, Dai Y, Yu L, Huang BB. Energy transfer in plasmonic photocatalytic composites. Light Sci Appl. 2016;5(2):e16017. | 
		
				| [19] | Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009;461(7264):629–32. | 
		
				| [20] | Xu X, Qi Q, Hu Q, Ma L, Emusani R, Zhang S, et al. Manipulating pi-pi Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers. Phys Rev Lett. 2024;133(23):233001. | 
		
				| [21] | Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics. 2011;5(6):349–56. | 
		
				| [22] | Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10(1):59. | 
		
				| [23] | Yang B, Chen G, Ghafoor A, Zhang Y, Zhang Y, Zhang Y, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat Photonics. 2020;14(11):693–9. | 
		
				| [24] | Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568(7750):78–82. | 
		
				| [25] | Lin QQ, Hu S, Földes T, Huang JY, Wright D, Griffiths J, et al. Optical suppression of energy barriers in single molecule-metal binding. Sci Adv. 2022;8(25):eabp9285. | 
		
				| [26] | Guo C, Benzie P, Hu S, de Nijs B, Miele E, Elliott E, et al. Extensive photochemical restructuring of molecule-metal surfaces under room light. Nat Commun. 2024;15(1):1928. | 
		
				| [27] | Xomalis A, Chikkaraddy R, Oksenberg E, Shlesinger I, Huang J, Garnett EC, et al. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities. ACS Nano. 2020;14(8):10562–8. | 
		
				| [28] | Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H. Three-dimensional plasmon rulers. Science. 2011;332(6036):1407–10. | 
		
				| [29] | Tabor C, Murali R, Mahmoud M, El-Sayed MA. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J Phys Chem A. 2009;113(10):1946–53. | 
		
				| [30] | Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, et al. Plasmon ruler with angstrom length resolution. ACS Nano. 2012;6(10):9237–46. | 
		
				| [31] | Elliott E, Bedingfield K, Huang JY, Hu S, de Nijs B, Demetriadou A, et al. Fingerprinting the hidden facets of plasmonic nanocavities. ACS Photonics. 2022;9(8):2643–51. | 
		
				| [32] | Yao J, Li Y, Wang S, Ding T. Thin-film-assisted photothermal deformation of gold nanoparticles: a facile and in-situ strategy for single-plate-based devices. ACS Nano. 2024;18(15):10618–24. | 
		
				| [33] | Abraham U. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96(4):1533–54. | 
		
				| [34] | Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, et al. Plasmon-assisted trapping of single molecules in nanogap. Materials. 2023;16(8):3230. | 
		
				| [35] | Zhan C, Wang G, Yi J, Wei J-Y, Li Z-H, Chen Z-B, et al. Single-molecule plasmonic optical trapping. Matter. 2020;3(4):1350–60. | 
		
				| [36] | Zhao X, Yan Y, Tan M, Zhang S, Xu X, Zhao Z, et al. Molecular dimer junctions forming: role of disulfide bonds and electrode-compression-time. SmartMat. 2024;5(4):e1280. | 
		
				| [37] | Ciracì C. Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Phys Rev B. 2017;95(24):245434. | 
		
				| [38] | Li WC, Zhou Q, Zhang P, Chen XW. Direct electro plasmonic and optic modulation via a nanoscopic electron reservoir. Phys Rev Lett. 2022;128(21):217401. | 
		
				| [39] | Zhou Q, Li WC, He Z, Zhang P, Chen XW. Quantum hydrodynamic model for noble metal nanoplasmonics. Phys Rev B. 2023;107(20):205413. | 
		
				| [40] | Liu R, Bi J-J, Xie Z, Yin K, Wang D, Zhang G-P, et al. Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev A. 2018;9(5):054023. | 
		
				| [41] | Zhang X, Zhao Z, Zhang S, Adijiang A, Zhao T, Tan M, et al. In situ reconnection of nanoelectrodes over 20 nm gaps on polyimide substrate. Small Structures. 2024;5(2):2300283. | 
		
				| [42] | Choi HK, Park WH, Park CG, Shin HH, Lee KS, Kim ZH. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J Am Chem Soc. 2016;138(13):4673–84. | 
		
				| [43] | Mueller NS, Arul R, Jakob LA, Blunt MO, Földes T, Rosta E, et al. Collective mid-infrared vibrations in surface-enhanced Raman scattering. Nano Lett. 2022;22(17):7254–60. | 
		
				| [44] | Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc. 2010;132(27):9244–6. | 
		
				| [45] | Teodorescu CM. Image molecular dipoles in surface enhanced Raman scattering. Phys Chem Chem Phys. 2015;17(33):21302–14. |