| [1] | LiDAR drives forwards. Nat Photon. 2018;12:441. | 
		
				| [2] | Kim I, et al. Nanophotonics for light detection and ranging technology. Nat Nanotechnol. 2021;16:508–52456. | 
		
				| [3] | Frachetti MD, Berner J, Liu X, et al. Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia. Nature. 2024;634:1118–24. | 
		
				| [4] | Coddington I, et al. Rapid and precise absolute distance measurements at long range. Nat Photon. 2009;3:351–6. | 
		
				| [5] | Lee J, Kim YJ, Lee K, et al. Time-of-flight measurement with femtosecond light pulses. Nat Photon. 2010;4:716–20. | 
		
				| [6] | Na Y, Jeon CG, Ahn C, et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat Photon. 2020;14:355–60. | 
		
				| [7] | Mitchell EW, et al. Coherent laser ranging for precision imaging through flames. Optica. 2018;5:988. | 
		
				| [8] | Kuse N, Fermann ME. Frequency-modulated comb LIDAR. APL Photonics. 2019;4:106105. | 
		
				| [9] | Karpf S, Riche CT, Di Carlo D, et al. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat Commun. 2020;11:2062. | 
		
				| [10] | Goda K, Tsia KK, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature. 2009;458:1145–9. | 
		
				| [11] | Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP). Nat Photon. 2014;8:695–700. | 
		
				| [12] | Jiang Y, Karpf S, Jalali B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat Photon. 2020;14:14–8. | 
		
				| [13] | Mahjoubfar A, et al. Time stretch and its applications. Nat Photon. 2017;11:341–51. | 
		
				| [14] | Zang Z, et al. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photonics. 2022;7:046102. | 
		
				| [15] | Bartels A, et al. 10-GHz self-referenced optical frequency comb. Science. 2009;326:681–681. | 
		
				| [16] | Schliesser A, Picqué N, Hänsch T. Mid-infrared frequency combs. Nat Photon. 2012;6:440–9. | 
		
				| [17] | David RC, et al. Ultrafast electro-optic light with subcycle control. Science. 2018;361:1358–63. | 
		
				| [18] | Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–7. | 
		
				| [19] | Kippenberg TJ, et al. Dissipative kerr solitons in optical microresonators. Science. 2018;361:567. | 
		
				| [20] | Song Y, Hu Y, Zhu X, et al. Octave-spanning kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light Sci Appl. 2024;13:225. | 
		
				| [21] | Riemensberger J, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature. 2020;581:164–70. | 
		
				| [22] | Lukashchuk A, Riemensberger J, Karpov M, et al. Dual chirped microcomb based parallel ranging at megapixel-line rates. Nat Commun. 2022;13:3280. | 
		
				| [23] | Suh M, Vahala KJ. Soliton microcomb range measurement. Science. 2018;359:884–7. | 
		
				| [24] | Trocha P, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science. 2018;359:887–91. | 
		
				| [25] | Han JJ, et al. Dual-comb spectroscopy over a 100 km open-air path. Nat Photon. 2024;18:1195–202. | 
		
				| [26] | Hwang I-P, Lee C-H. Mutual interferences of a true-random lidar with other lidar signals. IEEE Access. 2020;8:124123–33. | 
		
				| [27] | Matthey R, Mitev V. Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements. Opt Lasers Eng. 2005;43:557–71. | 
		
				| [28] | Tsai C-M, Liu Y-C. Anti-interference single-photon lidar using stochastic pulse position modulation. Opt Lett. 2020;45:439–42. | 
		
				| [29] | Chen JD, et al. 3-D multi-input multi-output (MIMO) pulsed chaos lidar based on time-division multiplexing. IEEE J Sel Top Quantum Electron. 2022;28(5):0600209. | 
		
				| [30] | Myneni K, Barr TA, Reed BR, Pethel SD, Corron NJ. High-precision ranging using a chaotic laser pulse train. Appl Phys Lett. 2001;78:1496–8. | 
		
				| [31] | Ho H-L, et al. High-speed 3D imaging using a chaos lidar system. Eur Phys J Spec Top. 2022;231:435–41. | 
		
				| [32] | Matsko AB, et al. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. Opt Lett. 2013;38:525–7. | 
		
				| [33] | Godey C, et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A. 2014;89:063814. | 
		
				| [34] | Lukashchuk A, et al. Chaotic microcomb inertia-free parallel ranging. APL Photonics. 2023;8:056102. | 
		
				| [35] | Chen R, Shu H, Shen B, et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat Photon. 2023;17:306–14. | 
		
				| [36] | Lukashchuk A, et al. Chaotic microcomb-based parallel ranging. Nat Photon. 2023;17:814–21. | 
		
				| [37] | Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photon. 2012;6:84–92. | 
		
				| [38] | Yang K, Zhou Y, Ling Y, et al. Spectral period doubling and encoding of dissipative optical solitons via gain control. PhotoniX. 2024;5:26. | 
		
				| [39] | Wang ZQ, et al. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat Commun. 2019;10:830. | 
		
				| [40] | Cai Y, Fan J, Meng F, et al. Delayed optical feedback-regulated artificial soliton molecule in a femtosecond optical parametric oscillator. PhotoniX. 2024;5:41. | 
		
				| [41] | Liu Y, et al. Phase-tailored assembly and encoding of dissipative soliton molecules. Light Sci Appl. 2023;12:123. | 
		
				| [42] | Chouli S, Grelu Ph. Soliton rains in a fiber laser: an experimental study. Phys Rev A. 2010;81:063829. | 
		
				| [43] | Cundiff ST, Soto-Crespo JM, Akhmediev N. Experimental evidence for soliton explosions. Phys Rev Lett. 2002;88:073903. | 
		
				| [44] | Chen Y, et al. The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys Lett. 2014;11:055101. | 
		
				| [45] | Tang DY, Zhao LM, Zhao B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt Express. 2005;13:2289–94. | 
		
				| [46] | Jose A, et al. Noise-like pulse seeded supercontinuum generation: an in-depth review for high-energy flat broadband sources. Laser Photon Rev. 2024;19(5): 2400511. | 
		
				| [47] | Goda K, Jalali B. Dispersive fourier transformation for fast continuous single-shot measurements. Nat Photon. 2013;7:102–12. | 
		
				| [48] | Agrawal GP. Optical pulse propagation in doped fiber amplifiers. Phys Rev A. 1991;44:7493. | 
		
				| [49] | Igbonacho J, et al. Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser. Phys Rev A. 2019;99:063824. | 
		
				| [50] | Zavyalov A, Iliew R, Egorov O, Lederer F. Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers. Phys Rev A. 2009;80(4):043829. | 
		
				| [51] | Xu Z, Tian H, Zeng Z, et al. Harnessing nonlinear optoelectronic oscillator for speeding up r |