留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scalable high-efficiency metasurface-refractive retro-reflector

Quan Yuan, Qin Ge, Xiujuan Zou, Yi Zhang, Yuhang Yang, Boyan Fu, Ruoyu Lin, Boping He, Shuming Wang, Din Ping Tsai, Shining Zhu, Zhenlin Wang. Scalable high-efficiency metasurface-refractive retro-reflector[J]. PhotoniX. doi: 10.1186/s43074-025-00172-9
Citation: Quan Yuan, Qin Ge, Xiujuan Zou, Yi Zhang, Yuhang Yang, Boyan Fu, Ruoyu Lin, Boping He, Shuming Wang, Din Ping Tsai, Shining Zhu, Zhenlin Wang. Scalable high-efficiency metasurface-refractive retro-reflector[J]. PhotoniX. doi: 10.1186/s43074-025-00172-9

doi: 10.1186/s43074-025-00172-9

Scalable high-efficiency metasurface-refractive retro-reflector

Funds: This work was supported by the National Program on Key Basic Research Project of China (2022YFA1404300), National Natural Science Foundation of China (No. 12325411, 62288101, 11774162, and 62375232), The Open Research Fund of the State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (SKLST202218), the Fundamental Research Funds for the Central Universities (020414380175), Natural Science Research Start Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant No. NY223152), The University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. AoE/P-502/20, CRF Project: C5031-22G and C1015-21E, GRF Project: CityU15303521; CityU11305223, and Germany/Hong Kong Joint Research Scheme: GCityU101/22], and City University of Hong Kong [Project No. 9380131, 9610628, and 7005867].
  • [1] Dickey JO, et al. Lunar laser ranging: a continuing legacy of the apollo program. Science. 1994;265:482–90.
    [2] Gilbreath GC. Large-aperture multiple quantum well modulating retro-reflector for free-space optical data transfer on unmanned aerial vehicles. Opt Eng. 2001;40:1348–56.
    [3] Wang X, Feng X, Zhang P, Wang T, Gao S. Single-source bidirectional free-space optical communications using reflective SOA-based amplified modulating retro-reflection. Optics Communications. 2017;387:43–7.
    [4] Li H, Lee WB, Zhou C, Choi DY, Lee SS. Flat Retro-reflector Based on a Metasurface Doublet Enabling Reliable and Angle-Tolerant Free-Space Optical Link. Advanced Optical Materials. 2021;9:2100796.
    [5] Yongbing L, Guoxiong Z, Zhen L. An improved cat s-eye retro-reflector used in a laser tracking interferometer system. Meas Sci Technol. 2003;14:N36–40.
    [6] Takatsuji T, Goto M, Osawa S, Yin R, Kurosawa T. Whole-viewing-angle cat’s-eye retro-reflector as a target of laser trackers. Meas Sci Technol. 1999;10:N87–90.
    [7] Goetz PG, et al. Modulating Retro-Reflector Lasercom Systems for Small Unmanned Vehicles. IEEE J Sel Areas Commun. 2012;30:986–92.
    [8] Montenbruck O, et al. GNSS satellite geometry and attitude models. Adv Space Res. 2015;56:1015–29.
    [9] Steindorfer MA, et al. Daylight space debris laser ranging. Nat Commun. 2020;11:3735.
    [10] Dell’Agnello S, et al. INRRI-EDM/2016: the first laser retro-reflector on the surface of Mars. Adv Space Res. 2017;59:645–55.
    [11] Sun X, et al. Small and lightweight laser retro-reflector arrays for lunar landers. Appl Opt. 2019;58:9259–66.
    [12] Yuan J, Chang S, Li S, Zhang Y. Design and fabrication of micro-cube-corner array retro-reflectors. Optics Communications. 2002;209:75–83.
    [13] Kim H. Optimal design of retro-reflection corner-cube sheets by geometric optics analysis. Opt Eng. 2007;46:094002–094002.
    [14] Lou Y, Wang H, Liu Q, Shi Y, He S. Analysis and fabrication of corner cube array based on laser direct writing technology. Appl Opt. 2010;49:5567–74.
    [15] Brinksmeier E, Gläbe R, Flucke C. Manufacturing of molds for replication of micro cube corner retro-reflectors. Prod Eng Res Devel. 2008;2:33–8.
    [16] Chen H, Tang L, Zhang S, Song H, Shi Z. Effects of incident beam deviation from the center of a cat’s eye retro-reflector on the measurement accuracy of a laser tracing system. Opt Lasers Eng. 2021;137: 106387.
    [17] Sheng Q, et al. Enhancing the field of view of cat-eye retro-reflectors by simply matching the mirror radius of curvature and the lens focal length. Results in Physics. 2022;37: 105558.
    [18] Yu N, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
    [19] Chen X, et al. Dual-polarity plasmonic meta-lens for visible light. Nat Commun. 2012;3:1198.
    [20] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–50.
    [21] Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science. 2015;349:1310–4.
    [22] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10:937–43.
    [23] Khorasaninejad M, et al. Meta-lenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
    [24] Wang S, et al. A broadband achromatic meta-lens in the visible. Nat Nanotechnol. 2018;13:227–32.
    [25] Krishnamoorthy HN, Jacob Z, Narimanov E, Kretzschmar I, Menon VM. Topological transitions in metamaterials. Science. 2012;336:205–9.
    [26] Chen WT, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014;14(1):225–30.
    [27] Huang YW, et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 2015;15:3122–7.
    [28] Dyachenko PN, et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat Commun. 2016;7:11809.
    [29] Huang YW, et al. Gate-Tunable Conducting Oxide Metasurfaces. Nano Lett. 2016;16:5319–25.
    [30] Chen WT, et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology. 2016;27: 224002.
    [31] Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science. 2016;354:2956–63.
    [32] Wang L, et al. Grayscale transparent metasurface holograms Optica. 2016;3:1504–5.
    [33] Sherrott MC, et al. Experimental Demonstration of >230 degrees Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017;17:3027–34.
    [34] Wu PC, et al. Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. Nano Lett. 2017;17:445.
    [35] Cheben P, Halir R, Schmid JH, Atwater HA, Smith DR. Subwavelength integrated photonics. Nature. 2018;560:565–72.
    [36] Liu Z, Zhu D, Rodrigues SP, Lee KT, Cai W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018;18:6570–6.
    [37] Jia Y, et al. Retro-reflective metasurfaces for backscattering enhancement under oblique incidence. AIP Adv. 2017;7: 105315.
    [38] Yan L. et al., 0.2 lambda0 Thick Adaptive Retro-reflector Made of Spin-Locked Metasurface. Adv Mater. 30, e1802721 (2018).
    [39] Li M, et al. Angular-Adaptive Spin-Locked Retro-reflector Based on Reconfigurable Magnetic Metagrating. Adv Optical Mater. 2019;7(13):1900151.
    [40] Tan Q, et al. Broadband Spin-Locked Metasurface Retro-reflector Adv Sci (Weinh). 2022;9: e2201397.
    [41] Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retro-reflector. Nat Photonics. 2017;11:415–20.
    [42] Liu Y-Q, Li S, Guo J, Li L, Yin H. Planar microwave retro-reflector based on transmissive gradient index metasurface. New J Phys. 2020;22: 063044.
计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-14
  • 录用日期:  2025-04-24
  • 修回日期:  2025-04-21
  • 网络出版日期:  2025-05-15

目录

    /

    返回文章
    返回