[1] |
Dickey JO, et al. Lunar laser ranging: a continuing legacy of the apollo program. Science. 1994;265:482–90.
|
[2] |
Gilbreath GC. Large-aperture multiple quantum well modulating retro-reflector for free-space optical data transfer on unmanned aerial vehicles. Opt Eng. 2001;40:1348–56.
|
[3] |
Wang X, Feng X, Zhang P, Wang T, Gao S. Single-source bidirectional free-space optical communications using reflective SOA-based amplified modulating retro-reflection. Optics Communications. 2017;387:43–7.
|
[4] |
Li H, Lee WB, Zhou C, Choi DY, Lee SS. Flat Retro-reflector Based on a Metasurface Doublet Enabling Reliable and Angle-Tolerant Free-Space Optical Link. Advanced Optical Materials. 2021;9:2100796.
|
[5] |
Yongbing L, Guoxiong Z, Zhen L. An improved cat s-eye retro-reflector used in a laser tracking interferometer system. Meas Sci Technol. 2003;14:N36–40.
|
[6] |
Takatsuji T, Goto M, Osawa S, Yin R, Kurosawa T. Whole-viewing-angle cat’s-eye retro-reflector as a target of laser trackers. Meas Sci Technol. 1999;10:N87–90.
|
[7] |
Goetz PG, et al. Modulating Retro-Reflector Lasercom Systems for Small Unmanned Vehicles. IEEE J Sel Areas Commun. 2012;30:986–92.
|
[8] |
Montenbruck O, et al. GNSS satellite geometry and attitude models. Adv Space Res. 2015;56:1015–29.
|
[9] |
Steindorfer MA, et al. Daylight space debris laser ranging. Nat Commun. 2020;11:3735.
|
[10] |
Dell’Agnello S, et al. INRRI-EDM/2016: the first laser retro-reflector on the surface of Mars. Adv Space Res. 2017;59:645–55.
|
[11] |
Sun X, et al. Small and lightweight laser retro-reflector arrays for lunar landers. Appl Opt. 2019;58:9259–66.
|
[12] |
Yuan J, Chang S, Li S, Zhang Y. Design and fabrication of micro-cube-corner array retro-reflectors. Optics Communications. 2002;209:75–83.
|
[13] |
Kim H. Optimal design of retro-reflection corner-cube sheets by geometric optics analysis. Opt Eng. 2007;46:094002–094002.
|
[14] |
Lou Y, Wang H, Liu Q, Shi Y, He S. Analysis and fabrication of corner cube array based on laser direct writing technology. Appl Opt. 2010;49:5567–74.
|
[15] |
Brinksmeier E, Gläbe R, Flucke C. Manufacturing of molds for replication of micro cube corner retro-reflectors. Prod Eng Res Devel. 2008;2:33–8.
|
[16] |
Chen H, Tang L, Zhang S, Song H, Shi Z. Effects of incident beam deviation from the center of a cat’s eye retro-reflector on the measurement accuracy of a laser tracing system. Opt Lasers Eng. 2021;137: 106387.
|
[17] |
Sheng Q, et al. Enhancing the field of view of cat-eye retro-reflectors by simply matching the mirror radius of curvature and the lens focal length. Results in Physics. 2022;37: 105558.
|
[18] |
Yu N, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
|
[19] |
Chen X, et al. Dual-polarity plasmonic meta-lens for visible light. Nat Commun. 2012;3:1198.
|
[20] |
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–50.
|
[21] |
Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science. 2015;349:1310–4.
|
[22] |
Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10:937–43.
|
[23] |
Khorasaninejad M, et al. Meta-lenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
|
[24] |
Wang S, et al. A broadband achromatic meta-lens in the visible. Nat Nanotechnol. 2018;13:227–32.
|
[25] |
Krishnamoorthy HN, Jacob Z, Narimanov E, Kretzschmar I, Menon VM. Topological transitions in metamaterials. Science. 2012;336:205–9.
|
[26] |
Chen WT, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014;14(1):225–30.
|
[27] |
Huang YW, et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 2015;15:3122–7.
|
[28] |
Dyachenko PN, et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat Commun. 2016;7:11809.
|
[29] |
Huang YW, et al. Gate-Tunable Conducting Oxide Metasurfaces. Nano Lett. 2016;16:5319–25.
|
[30] |
Chen WT, et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology. 2016;27: 224002.
|
[31] |
Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science. 2016;354:2956–63.
|
[32] |
Wang L, et al. Grayscale transparent metasurface holograms Optica. 2016;3:1504–5.
|
[33] |
Sherrott MC, et al. Experimental Demonstration of >230 degrees Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017;17:3027–34.
|
[34] |
Wu PC, et al. Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. Nano Lett. 2017;17:445.
|
[35] |
Cheben P, Halir R, Schmid JH, Atwater HA, Smith DR. Subwavelength integrated photonics. Nature. 2018;560:565–72.
|
[36] |
Liu Z, Zhu D, Rodrigues SP, Lee KT, Cai W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018;18:6570–6.
|
[37] |
Jia Y, et al. Retro-reflective metasurfaces for backscattering enhancement under oblique incidence. AIP Adv. 2017;7: 105315.
|
[38] |
Yan L. et al., 0.2 lambda0 Thick Adaptive Retro-reflector Made of Spin-Locked Metasurface. Adv Mater. 30, e1802721 (2018).
|
[39] |
Li M, et al. Angular-Adaptive Spin-Locked Retro-reflector Based on Reconfigurable Magnetic Metagrating. Adv Optical Mater. 2019;7(13):1900151.
|
[40] |
Tan Q, et al. Broadband Spin-Locked Metasurface Retro-reflector Adv Sci (Weinh). 2022;9: e2201397.
|
[41] |
Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retro-reflector. Nat Photonics. 2017;11:415–20.
|
[42] |
Liu Y-Q, Li S, Guo J, Li L, Yin H. Planar microwave retro-reflector based on transmissive gradient index metasurface. New J Phys. 2020;22: 063044.
|