[1] |
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3(10):793–6.
|
[2] |
Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91(11):4258–72.
|
[3] |
Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000;198(2):82–7.
|
[4] |
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci. 2000;97(15):8206–10.
|
[5] |
Zhao K, Xu X, Ren W, Jin D, Xi P. Two-photon MINFLUX with doubled localization precision. eLight. 2022;2(1):5.
|
[6] |
Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 2015;349(6251):aab3500.
|
[7] |
Shao L, Kner P, Rego EH, Gustafsson MG. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods. 2011;8(12):1044–6.
|
[8] |
Zhanghao K, Chen X, Liu W, Li M, Liu Y, Wang Y, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat Commun. 2019;10(1):4694.
|
[9] |
Johnson KA, Hagen GM. Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction. Gigascience. 2020;9(4):giaa035.
|
[10] |
Wang Z, Zhao T, Hao H, Cai Y, Feng K, Yun X, et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy. Adv Photon. 2022;4(2):026003.
|
[11] |
Huang G, Liu Y, Wang D, Zhu Y, Wen S, Ruan J, et al. Upconversion nanoparticles for super-resolution quantification of single small extracellular vesicles. eLight. 2022;2(1):20.
|
[12] |
Chen X, Zhong S, Hou Y, Cao R, Wang W, Li D, et al. Superresolution structured illumination microscopy reconstruction algorithms: a review. Light Sci Appl. 2023;12(1):172.
|
[13] |
Lai-Tim Y, Mugnier LM, Orieux F, Baena-Gallé R, Paques M, Meimon S. Jointly super-resolved and optically sectioned Bayesian reconstruction method for structured illumination microscopy. Opt Express. 2019;27(23):33251–67.
|
[14] |
Müller M, Mönkemöller V, Hennig S, Hübner W, Huser T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat Commun. 2016;7(1):10980.
|
[15] |
Saxena M, Eluru G, Gorthi SS. Structured illumination microscopy. Adv Opt Photon. 2015;7(2):241–75.
|
[16] |
Wang Z, Zhao T, Cai Y, Zhang J, Hao H, Liang Y, et al. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation. 2023;4(3):100425.
|
[17] |
Descloux A, Müller M, Navikas V, Markwirth A, Van den Eynde R, Lukes T, et al. High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism. Nanophotonics. 2020;9(1):143–8.
|
[18] |
Lyu J, Qian J, Xu K, Huang Y, Zuo C. Motion-resistant structured illumination microscopy based on principal component analysis. Opt Lett. 2023;48(1):175–8.
|
[19] |
Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, et al. Dynamic super-resolution structured illumination imaging in the living brain. Proc Natl Acad Sci. 2019;116(19):9586–91.
|
[20] |
Gustafsson MG, Shao L, Carlton PM, Wang CR, Golubovskaya IN, Cande WZ, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J. 2008;94(12):4957–70.
|
[21] |
Wicker K, Mandula O, Best G, Fiolka R, Heintzmann R. Phase optimisation for structured illumination microscopy. Opt Express. 2013;21(2):2032–49.
|
[22] |
Wicker K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Opt Express. 2013;21(21):24692–701.
|
[23] |
Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci Rep. 2013;3(1):1116.
|
[24] |
Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep. 2015;5(1):15915.
|
[25] |
Qian J, Xu K, Feng S, Liu Y, Ma H, Chen Q, et al. Fast-Structured Illumination Microscopy Based on Dichotomy-Correlation Parameter Estimation (dCOR-SIM). ACS Photonics. 2024;11(5):1887–92.
|
[26] |
Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol. 2018;36(5):451–9.
|
[27] |
Zhao W, Zhao S, Li L, Huang X, Xing S, Zhang Y, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol. 2022;40(4):606–17.
|
[28] |
Chu K, McMillan PJ, Smith ZJ, Yin J, Atkins J, Goodwin P, et al. Image reconstruction for structured-illumination microscopy with low signal level. Opt Express. 2014;22(7):8687–702.
|
[29] |
Wen G, Li S, Wang L, Chen X, Sun Z, Liang Y, et al. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci Appl. 2021;10(1):70.
|
[30] |
Soubies E, Nogueron A, Pelletier F, Mangeat T, Leterrier C, Unser M, et al. Surpassing light inhomogeneities in structured-illumination microscopy with FlexSIM. J Microsc. 2024;296(1):94–106.
|
[31] |
Qian J, Cao Y, Bi Y, Wu H, Liu Y, Chen Q, et al. Structured illumination microscopy based on principal component analysis. eLight. 2023;3(1):4.
|
[32] |
Jin L, Liu B, Zhao F, Hahn S, Dong B, Song R, et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat Commun. 2020;11(1):1934.
|
[33] |
Qian J, Cao Y, Xu K, Bi Y, Xia W, Chen Q, et al. Robust frame-reduced structured illumination microscopy with accelerated correlation-enabled parameter estimation. Appl Phys Lett. 2022;121(15):153701.
|
[34] |
Ströhl F, Kaminski CF. Speed limits of structured illumination microscopy. Opt Lett. 2017;42(13):2511–4.
|
[35] |
Orieux F, Sepulveda E, Loriette V, Dubertret B, Olivo-Marin JC. Bayesian estimation for optimized structured illumination microscopy. IEEE Trans Image Process. 2011;21(2):601–14.
|
[36] |
Lal A, Shan C, Zhao K, Liu W, Huang X, Zong W, et al. A frequency domain SIM reconstruction algorithm using reduced number of images. IEEE Trans Image Process. 2018;27(9):4555–70.
|
[37] |
Dong S, Liao J, Guo K, Bian L, Suo J, Zheng G. Resolution doubling with a reduced number of image acquisitions. Biomed Opt Express. 2015;6(8):2946–52.
|
[38] |
Ling C, Zhang C, Wang M, Meng F, Du L, Yuan X. Fast structured illumination microscopy via deep learning. Photon Res. 2020;8(8):1350–9.
|
[39] |
Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydın H, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods. 2019;16(1):103–10.
|
[40] |
Shah ZH, Müller M, Wang TC, Scheidig PM, Schneider A, Schüttpelz M, et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photon Res. 2021;9(5):B168–81.
|
[41] |
Christensen CN, Ward EN, Lu M, Lio P, Kaminski CF. ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning. Biomed Opt Express. 2021;12(5):2720–33.
|
[42] |
Qiao C, Li D, Guo Y, Liu C, Jiang T, Dai Q, et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat Methods. 2021;18(2):194–202.
|
[43] |
Qiao C, Li D, Liu Y, Zhang S, Liu K, Liu C, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol. 2023;41(3):367–77.
|
[44] |
Qiao C, Zeng Y, Meng Q, Chen X, Chen H, Jiang T, et al. Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy. Nat Commun. 2024;15(1):4180.
|
[45] |
Chen X, Qiao C, Jiang T, Liu J, Meng Q, Zeng Y, et al. Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging. PhotoniX. 2024;5(1):4.
|
[46] |
Wu H, Li Y, Sun Y, Yin L, Sun W, Ye Z, et al. Single-frame structured illumination microscopy for fast live-cell imaging. APL Photon. 2024;9(3):036102.
|
[47] |
Saurabh A, Brown PT, Bryan JS 4th, et al. Approaching maximum resolution in structured illumination microscopy via accurate noise modeling. npj Imaging. 2025;3(5).
|
[48] |
Zhang, Qinnan, et al. Deep learning-based single-shot structured illumination microscopy. Opt Lasers Eng. 2022;155:107066.
|
[49] |
Cheng X, Li J, Dai Q, Fu Z, Yang J. Fast and lightweight network for single frame structured illumination microscopy super-resolution. IEEE Trans Instrum Meas. 2022;71:1–11.
|
[50] |
Ganaie MA, Hu M, Malik AK, Tanveer M, Suganthan PN. Ensemble deep learning: A review. Eng Appl Artif Intell. 2022;115:105151.
|
[51] |
Rahman MSS, Li J, Mengu D, Rivenson Y, Ozcan A. Ensemble learning of diffractive optical networks. Light Sci Appl. 2021;10(1):14.
|
[52] |
Feng S, Xiao Y, Yin W, Hu Y, Li Y, Zuo C, et al. Fringe-pattern analysis with ensemble deep learning. Adv Photon Nexus. 2023;2(3):036010.
|
[53] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Switzerland: Springer; 2015. pp. 234–41.
|
[54] |
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2016. pp. 770–8.
|
[55] |
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. Transunet: Transformers make strong encoders for medical image segmentation. 2021. arXiv preprint arXiv:2102.04306. https://arxiv.org/abs/2102.04306.
|
[56] |
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Switzerland: Springer; 2016. pp. 424–32.
|
[57] |
Li Z, Sun J, Fan Y, Jin Y, Shen Q, Trusiak M, et al. Deep learning assisted variational Hilbert quantitative phase imaging. Opto-Electron Sci. 2023;2:220023.
|
[58] |
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al. Attention u-net: Learning where to look for the pancreas. 2018. arXiv preprint arXiv:1804.03999. https://arxiv.org/abs/1804.03999.
|
[59] |
Wang Z, Zhu L, Zhang H, Li G, Yi C, Li Y, et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat Methods. 2021;18(5):551–6.
|
[60] |
Li X, Hu X, Chen X, Fan J, Zhao Z, Wu J, et al. Spatial redundancy transformer for self-supervised fluorescence image denoising. Nat Comput Sci. 2023;3(12):1067–80.
|
[61] |
Chen R, Tang X, Zhao Y, Shen Z, Zhang M, Shen Y, et al. Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging. Nat Commun. 2023;14(1):2854.
|
[62] |
Tai Y, Yang J, Liu X. Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 3147–55.
|
[63] |
Fan J, Tang X, Bi X, Miao Y, Li W, Xiao B, et al. High-Fidelity Reconstruction of Structured Illumination Microscopy by an Amplitude-Phase Channel Attention Network With Multitemporal Information. IEEE Trans Instrum Meas. 2023;72:1–13.
|
[64] |
Choi H, Lee J, Yang J. N-gram in swin transformers for efficient lightweight image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2023. pp. 2071–81.
|
[65] |
Chen J, Kao Sh, He H, Zhuo W, Wen S, Lee CH, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2023. pp. 12021–31.
|
[66] |
Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision. Switzerland: Springer; 2022. pp. 205–18.
|
[67] |
Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2016. pp. 1874–83.
|
[68] |
Zuo C, Qian J, Feng S, Yin W, Li Y, Fan P, et al. Deep learning in optical metrology: a review. Light Sci Appl. 2022;11(1):1–54.
|
[69] |
Li YJ, Cao YL, Feng JX, Qi Y, Meng S, Yang JF, et al. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset. Nat Commun. 2019;10(1):4914.
|
[70] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
|
[71] |
Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data. 2016;3:1–40.
|
[72] |
Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1–48.
|
[73] |
Sun Y, Zhu H, Yin L, Wu H, Cai M, Sun W, et al. Fluorescence interference structured illumination microscopy for 3D morphology imaging with high axial resolution. Adv Photon. 2023;5(5):056007.
|
[74] |
Hendrycks D, Gimpel K. Gaussian error linear units (gelus). 2016. arXiv preprint arXiv:1606.08415. https://arxiv.org/abs/1606.08415.
|
[75] |
Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2018. pp. 586–95.
|
[76] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv:1409.1556. https://arxiv.org/abs/1409.1556.
|
[77] |
Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014. arXiv preprint arXiv:1412.6980. https://arxiv.org/abs/1412.6980.
|