留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration

Dewei Zhang, Chun-Ting Xu, Quan-Ming Chen, Han Cao, Hong-Guan Yu, Qing-Gui Tan, Yan-qing Lu, Wei Hu. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration[J]. PhotoniX. doi: 10.1186/s43074-024-00132-9
Citation: Dewei Zhang, Chun-Ting Xu, Quan-Ming Chen, Han Cao, Hong-Guan Yu, Qing-Gui Tan, Yan-qing Lu, Wei Hu. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration[J]. PhotoniX. doi: 10.1186/s43074-024-00132-9

doi: 10.1186/s43074-024-00132-9

Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration

Funds: This work was supported by the National Key Research and Development Program of China (2022YFA1203703), the National Natural Science Foundation of China (NSFC) (62035008), the Stable Support Fund of State Administration Science Technology and Industry for National Defense (HTKJ2022KL504003), and Fundamental Research Funds for the Central Universities (021314380233).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Malek SC, Overvig AC, Alu A, Yu N. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci Appl. 2022;11:246.
    [2] Spagele C, et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat Commun. 2021;12:3787.
    [3] Yu N, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
    [4] Sun S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11:426–31.
    [5] Chen P, Wei BY, Hu W, Lu YQ. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater. 2020;32:e1903665.
    [6] Chen QM, Xu CT, Liang X, Hu W. Helical structure endows liquid crystal planar optics with a customizable working band. Adv Quantum Technol. 2023;6:2200153.
    [7] Meem M, et al. Broadband lightweight flat lenses for long-wave infrared imaging. Proc Natl Acad Sci U S A. 2019;116:21375–8.
    [8] Hua X, et al. Ultra-compact snapshot spectral light-field imaging. Nat Commun. 2022;13:2732.
    [9] Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components. Science. 2017;358:1146.
    [10] Chen WT, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6.
    [11] Chen C, et al. Spectral tomographic imaging with aplanatic metalens. Light Sci Appl. 2019;8:99.
    [12] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica. 2017;4:625–32.
    [13] Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater. 2020;5:604–20.
    [14] Wang S, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13:227–32.
    [15] Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science. 2015;347:1342–5.
    [16] Balli F, Sultan M, Lami SK, Hastings JT. A hybrid achromatic metalens. Nat Commun. 2020;11:3892.
    [17] Shen Z, et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv Photonics. 2020;2:036002.
    [18] Li Y, et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt Express. 2021;29:6011–20.
    [19] Zhan T, et al. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Adv Opt Mater. 2020;8:2000170.
    [20] Avayu O, Almeida E, Prior Y, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun. 2017;8: 14992.
    [21] Chen WT, et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat Commun. 2023;14:2544.
    [22] Zhou Y, et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 2018;18:7529–37.
    [23] Li Z, et al. Meta-optics achieves poly-chromatic focusing for virtual reality. Sci Adv. 2021;7:eabe4458.
    [24] Shrestha S, Overvig AC, Lu M, Stein A, Yu N. Broadband achromatic dielectric metalenses. Light Sci Appl. 2018;7:85.
    [25] Xiao X, et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci Appl. 2022;11:323.
    [26] Jiang M, et al. Low f-number diffraction-limited pancharatnam-berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers. Adv Mater. 2019;31:e1808028.
    [27] Xiong J, Zhong H, Cheng D, Wu S-T, Wang Y. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing. PhotoniX. 2023;4:35.
    [28] Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nat Photonics. 2016;10:389–92.
    [29] Rafayelyan M, Tkachenko G, Brasselet E. Reflective spin-orbit geometric phase from chiral anisotropic optical media. Phys Rev Lett. 2016;116: 253902.
    [30] Barboza R, Bortolozzo U, Clerc MG, Residori S. Berry phase of light under bragg reflection by chiral liquid-crystal media. Phys Rev Lett. 2016;117: 053903.
    [31] Xu CT, et al. Heliconical cholesterics endows spatial phase modulator with an electrically customizable working band. Adv Opt Mater. 2022;10:2201088.
    [32] Chen P, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv Mater. 2018;30:1705865.
    [33] Kobashi J, Yoshida H, Ozaki M. Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys Rev Lett. 2016;116: 253903.
    [34] Khorasaninejad M, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
    [35] Zhao M, et al. Phase characterisation of metalenses. Light Sci Appl. 2021;10:52.
    [36] Chen P, et al. Chirality invertible superstructure mediated active planar optics. Nat Commun. 2019;10:2518.
    [37] Xiong J, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight. 2021;1:3.
    [38] Chen BH, et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 2017;17:6345–52.
    [39] Yin K, He Z, Wu ST. Reflective polarization volume lens with small f-number and large diffraction angle. Adv Opt Mater. 2020;8:2000170.
    [40] Li L, Shi S, Escuti MJ. Improved saturation and wide-viewing angle color filters based on multi-twist retarders. Opt Express. 2021;29:4124–38.
    [41] Yuan R, et al. Spin-decoupled transflective spatial light modulations enabled by a piecewise-twisted anisotropic monolayer. Adv Sci. 2022;9:e2202424.
    [42] Wei BY, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv Mater. 2014;26:1590–5.
    [43] Zheng ZG, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature. 2016;531:352–6.
    [44] Liu J, et al. Circularly polarized luminescence in chiral orientationally ordered soft matter systems. Responsive Mater. 2023;1:e20230005.
    [45] Liu SJ, et al. Bi-chiral nanostructures featuring dynamic optical rotatory dispersion for polychromatic light multiplexing. Adv Mater. 2023;35:e2301714.
    [46] Shi Y, et al. Two-photon laser-written photoalignment layers for patterning liquid crystalline conjugated polymer orientation. Adv Funct Mater. 2020;31:2007493.
  • 加载中
图(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 录用日期:  2024-04-22
  • 修回日期:  2024-03-28
  • 网络出版日期:  2024-05-06

目录

    /

    返回文章
    返回