留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Large-scale optical switches by thermo-optic waveguide lens

Tao Chen, Zhangqi Dang, Zeyu Deng, Shijie Ke, Zhenming Ding, Ziyang Zhang. Large-scale optical switches by thermo-optic waveguide lens[J]. PhotoniX. doi: 10.1186/s43074-024-00131-w
Citation: Tao Chen, Zhangqi Dang, Zeyu Deng, Shijie Ke, Zhenming Ding, Ziyang Zhang. Large-scale optical switches by thermo-optic waveguide lens[J]. PhotoniX. doi: 10.1186/s43074-024-00131-w

doi: 10.1186/s43074-024-00131-w

Large-scale optical switches by thermo-optic waveguide lens

Funds: The authors would like to thank the industry partners for their sincere support and many valuable discussions.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Opt Express. 2018;26(12):16022–43.
    [2] Wu B, Zhang W, Zhou H, Dong J, Huang D, Wai PKA, et al. Chip-to-chip optical multimode communication with universal mode processors. PhotoniX. 2023;4(37):1–14.
    [3] Zhou H, Dong J, Cheng J, Dong W, Huang C, Shen Y, et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci Appl. 2022;11(1):30.
    [4] De Dobbelaere P, Falta K, Gloeckner S, Patra S. Digital MEMS for optical switching. IEEE Commun Mag. 2002;40(3):88–95.
    [5] Mizukami M, Yamaguchi J, Nemoto N, Kawajiri Y, Hirata H, Uchiyama S, et al. 128×128 three-dimensional MEMS optical switch module with simultaneous optical path connection for optical cross-connect systems. Appl Opt. 2011;50(21):4037–41.
    [6] Cao T, Hu T, Zhao Y. Research status and development trend of MEMS switches: a review. Micromachines. 2020;11(7):694.
    [7] Wang Z, Xu J, Yang P, Wang Z, Duong LHK, Chen X. High-radix nonblocking integrated optical switching fabric for data center. J Lightwave Technol. 2017;35(19):4268–81.
    [8] Wang C, Zhang D, Yue J, Lin H, Zhang X, Zhang T, et al. On-chip optical sources of 3D photonic integration based on active fluorescent polymer waveguide microdisks for light display application. PhotoniX. 2023;4(13):1–15.
    [9] Wang F, Wang X, Zhou H, Zhou Q, Hao Y, Jiang X, et al. Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer. Opt Express. 2009;17(9):7708–16.
    [10] Cheng Q, Dai LY, Abrams NC, Hung Y-H, Morrissey PE, Glick M, et al. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photonics Res. 2019;7(2):155–61.
    [11] Watts MR, Sun J, DeRose C, Trotter DC, Young RW, Nielson GN. Adiabatic thermo-optic Mach-Zehnder switch. Opt Lett. 2013;38(5):733–5.
    [12] Kita T, Mendez-Astudillo M. Ultrafast silicon MZI optical switch with periodic electrodes and integrated heat sink. J Lightwave Technol. 2021;39(15):5054–60.
    [13] Jayatilleka H, Murray K, Guillén-Torres MÁ, Caverley M, Hu R, Jaeger NA, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express. 2015;23(19):25084–97.
    [14] Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, et al. 16×16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt Express. 2016;24(9):9295–307.
    [15] Qiao L, Tang W, Chu T. 32×32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci Rep. 2017;7(1):42306.
    [16] Dumais P, Goodwill DJ, Celo D, Jiang J, Zhang C, Zhao F, et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J Lightwave Technol. 2018;36(2):233–8.
    [17] Suzuki K, Konoike R, Hasegawa J, Suda S, Matsuura H, Ikeda K, et al. Low-insertion-loss and power-efficient 32×32 silicon photonics switch with extremely high-Δ silica PLC connector. J Lightwave Technol. 2019;37(1):116–22.
    [18] Suzuki K, Konoike R, Yokoyama N, Seki M, Ohtsuka M, Saitoh S, et al. Nonduplicate polarization-diversity 32×32 silicon photonics switch based on a SiN/Si double-layer platform. J Lightwave Technol. 2020;38(2):226–32.
    [19] Watanabe T, Goh T, Okuno M, Sohma Si, Shibata T, Itoh M, et al., editors. Silica-based PLC 1×128 thermo-optic switch. Proceedings 27th European Conference on Optical Communication (Cat No 01TH8551). Amsterdam: IEEE; 2001. p. 134–5.
    [20] Gao W, Li X, Lu L, Liu C, Chen J, Zhou L. Broadband 32×32 strictly-nonblocking optical switch on a multi-layer Si3N4-on-SOI platform. Laser Photonics Rev. 2023;17(11):2300275.
    [21] Suzuki K, Konoike R, Matsuura H, Matsumoto R, Inoue T, Namiki S, et al., editors. Recent advances in large-scale optical switches based on silicon photonics. Optical Fiber Communication Conference. San Diego: Optica Publishing Group; 2022. p. W4B. 6.
    [22] Milanizadeh M, Aguiar D, Melloni A, Morichetti F. Canceling thermal cross-talk effects in photonic integrated circuits. J Lightwave Technol. 2019;37(4):1325–32.
    [23] Huang Y, Cheng Q, Hung Y-H, Guan H, Meng X, Novack A, et al. Multi-stage 8×8 silicon photonic switch based on dual-microring switching elements. J Lightwave Technol. 2019;38(2):194–201.
    [24] Marcuse D. Light propagation in square law medium. In: Light transmission optics 2nd. New York: Van Nostrand Reinhold. 1982. p. 263–285.
    [25] Gomez-Reino C, Perez MV, Bao C, Flores-Arias MT. Design of GRIN optical components for coupling and interconnects. Laser Photonics Rev. 2008;2(3):203–15.
    [26] Niu Y, Niu Y, Hu X, Hu Y, Du Q, Yu S, et al. On-chip wavefront shaping in spacing-varied waveguide arrays. Nanophotonics. 2023;12(19):3737–45.
    [27] Dang Z, Deng Z, Chen T, Ding Z, Zhang Z. C/L-band 2-port broadband wavelength multiplexing switch using polymer waveguides. J Lightwave Technol. 2023;41(8):2451–7.
    [28] Deng Z, Ding Z, Chen T, Zhang Z. Thermal gradient driven variable optical attenuator with on-chip CNT absorber. IEEE Photonics Technol Lett. 2024;36(4):243–6.
    [29] Chen T, Dang Z, Ding Z, Liu Z, Zhang Z. Multibit NOT logic gate enabled by a function programmable optical waveguide. Opt Lett. 2022;47(14):3519–22.
    [30] Soldano LB, Pennings EC. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol. 1995;13(4):615–27.
    [31] Zhang Z, Maese-Novo A, Polatynski A, Mueller T, Irmscher G, de Felipe D, et al., editors. Colorless, dual-polarization 90 hybrid with integrated VOAs and local oscillator on polymer platform. Optical Fiber Communication Conference. Los Angeles: Optica Publishing Group; 2015. p. Th1F. 3.
    [32] Soganci IM, Tanemura T, Nakano Y. Integrated phased-array switches for large-scale photonic routing on chip. Laser Photonics Rev. 2012;6(4):549–63.
  • 加载中
图(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 录用日期:  2024-04-10
  • 修回日期:  2024-03-28
  • 网络出版日期:  2024-04-18

目录

    /

    返回文章
    返回