留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications

Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX. doi: 10.1186/s43074-023-00101-8
引用本文: Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX. doi: 10.1186/s43074-023-00101-8
Bo Zhang, Zhuo Wang, Dezhi Tan, Jiangrong Qiu. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX. doi: 10.1186/s43074-023-00101-8
Citation: Bo Zhang, Zhuo Wang, Dezhi Tan, Jiangrong Qiu. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX. doi: 10.1186/s43074-023-00101-8

Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications

doi: 10.1186/s43074-023-00101-8

Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications

Funds: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U20A20211, 51902286, 61905215, and 62005164); the National Key R&D Program of China (No. 2021YFB2800500); the Key Research Project of Zhejiang Lab; China Postdoctoral Science Foundation (2021M702799).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Wang X-J, Fang H-H, Sun F-W, Sun H-B. Laser Writing of Color Centers. Laser Photonics Rev. 2022;16:2100029. https://doi.org/10.1002/lpor.202100029.
    [2] Du Y, et al. Precipitation of CsPbBr 3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers. Chem Eng J. 2020;401:126132. https://doi.org/10.1016/j.cej.2020.126132.
    [3] Mizuochi N, et al. Electrically driven single-photon source at room temperature in diamond. Nat Photonics. 2012;6:299–303. https://doi.org/10.1038/nphoton.2012.75.
    [4] Jin D, et al. 22.5-W narrow-linewidth diamond Brillouin laser at 1064 nm. Opt Lett. 2022;47:5360–3. https://doi.org/10.1364/OL.471447.
    [5] Yu M, et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature. 2022. https://doi.org/10.1038/s41586-022-05345-1.
    [6] Fang J, et al. 3D waveguide device for few-mode multi-core fiber optical communications. Photon Res. 2022;10:2677–85. https://doi.org/10.1364/PRJ.465174.
    [7] Wang P, Wang Y, Tong L. Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci Appl. 2013;2:102. https://doi.org/10.1038/lsa.2013.58.
    [8] Tan D, et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing. Opt Lett. 2020;45:3941–4. https://doi.org/10.1364/OL.396861.
    [9] Xu P, et al. Elastic ice microfibers. Science. 2021;373:187–92. https://doi.org/10.1126/science.abh3754.
    [10] Zhang X-L, et al. Non-Abelian braiding on photonic chips. Nat Photonics. 2022;16:390–5. https://doi.org/10.1038/s41566-022-00976-2.
    [11] Li L, et al. Integrated flexible chalcogenide glass photonic devices. Nat Photonics. 2014;8:643–9. https://doi.org/10.1038/nphoton.2014.138.
    [12] Pelucchi E, et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys. 2022;4:194–208. https://doi.org/10.1038/s42254-021-00398-z.
    [13] Wang T, et al. Periodically poled LiNbO3 crystals from 1D and 2D to 3D. SCIENCE CHINA Technol Sci. 2020;63:1110–26. https://doi.org/10.1007/s11431-019-1503-0.
    [14] Zhu D, et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photon. 2021;13:242–352. https://doi.org/10.1364/AOP.411024.
    [15] Juodkazis S, et al. Optical third harmonic generation during femtosecond pulse diffraction in a Bragg grating. J Phys D Appl Phys. 2006;39:50. https://doi.org/10.1088/0022-3727/39/1/009.
    [16] Dezhi T, Zhuo W, Beibei X, Jianrong Q. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photonic. 2021;3:1–24. https://doi.org/10.1117/1.AP.3.2.024002.
    [17] Meany T, et al. Laser written circuits for quantum photonics. Laser Photonics Rev. 2015;9:363–84. https://doi.org/10.1002/lpor.201500061.
    [18] Sun K, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science. 2022;375:307–10. https://doi.org/10.1126/science.abj2691.
    [19] Chen F, de Aldana JRV. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014;8:251–75. https://doi.org/10.1002/lpor.201300025.
    [20] Zhang X-L, et al. Non-Abelian braiding on photonic chips. Nat Photonics. 2022. https://doi.org/10.1038/s41566-022-00976-2.
    [21] Pezzagna S, Meijer J. Quantum computer based on color centers in diamond. Appl Phys Rev. 2021;8:011308. https://doi.org/10.1063/5.0007444.
    [22] Lenzini F, Gruhler N, Walter N, Pernice WHP. Diamond as a Platform for Integrated Quantum Photonics. Adv Quantum Technol. 2018;1:1800061. https://doi.org/10.1002/qute.201800061.
    [23] Ams M, Marshall GD, Spence DJ, Withford MJ. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express. 2005;13:5676–81. https://doi.org/10.1364/OPEX.13.005676.
    [24] Kowalevicz AM, Sharma V, Ippen EP, Fujimoto JG, Minoshima K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt Lett. 2005;30:1060–2. https://doi.org/10.1364/OL.30.001060.
    [25] Marshall GD, et al. Laser written waveguide photonic quantum circuits. Opt Express. 2009;17:12546–54. https://doi.org/10.1364/OE.17.012546.
    [26] Sun Y-K, et al. Non-Abelian Thouless pumping in photonic waveguides. Nat Phys. 2022;18:1080–5. https://doi.org/10.1038/s41567-022-01669-x.
    [27] Crespi A, et al. Integrated photonic quantum gates for polarization qubits. Nat Commun. 2011;2:566. https://doi.org/10.1038/ncomms1570.
    [28] Crespi A, et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat Photonics. 2013;7:545–9. https://doi.org/10.1038/nphoton.2013.112.
    [29] Wang C-Y, Gao J, Jin X-M. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Opt Lett. 2019;44:102–5. https://doi.org/10.1364/OL.44.000102.
    [30] Xu T, et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat Photonics. 2018;12:591–5. https://doi.org/10.1038/s41566-018-0225-1.
    [31] Wei D, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat Commun. 2019;10:4193. https://doi.org/10.1038/s41467-019-12251-0.
    [32] Wei D, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photonics. 2018;12:596–600. https://doi.org/10.1038/s41566-018-0240-2.
    [33] Ouyang X, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat Photonics. 2021;15:901–7. https://doi.org/10.1038/s41566-021-00880-1.
    [34] Wang Z, Tan D, Qiu J. Single-shot photon recording for three-dimensional memory with prospects of high capacity. Opt Lett. 2020;45:6274–7. https://doi.org/10.1364/OL.409171.
    [35] Gao L, Zhang Q, Evans RA, Gu M. 4D Ultra-High-Density Long Data Storage Supported by a Solid-State Optically Active Polymeric Material with High Thermal Stability. Adv Opt Mater. 2021;9:2100487. https://doi.org/10.1002/adom.202100487.
    [36] Sung JH, et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt Lett. 2017;42:2058–61. https://doi.org/10.1364/OL.42.002058.
    [37] Tan D, Sharafudeen KN, Yue Y, Qiu J. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci. 2016;76:154–228. https://doi.org/10.1016/j.pmatsci.2015.09.002.
    [38] Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photonics. 2008;2:219–25. https://doi.org/10.1038/nphoton.2008.47.
    [39] Huang X, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics. 2020;14:82–8. https://doi.org/10.1038/s41566-019-0538-8.
    [40] Guo B, et al. Femtosecond Laser Micro/Nano-manufacturing: Theories, Measurements, Methods, and Applications. Nanomanufacturing Metrol. 2020;3:26–67. https://doi.org/10.1007/s41871-020-00056-5.
    [41] Jia Y, Wang S, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electronic Advances.  2020;3, 190042-190041-190042-190012, https://doi.org/10.29026/oea.2020.190042.
    [42] Lin Z, Hong M. Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale. Ultrafast Science. 2021;2021:9783514. https://doi.org/10.34133/2021/9783514.
    [43] Tan D, Zhang B, Qiu J. Ultrafast Laser Direct Writing in Glass: Thermal Accumulation Engineering and Applications. Laser Photonics Rev. 2021;15:2000455. https://doi.org/10.1002/lpor.202000455.
    [44] Hu Y, Zhang W, Ye Y, Zhao Z, Liu C. Femtosecond-Laser-Induced Precipitation of CsPbBr 3 Perovskite Nanocrystals in Glasses for Solar Spectral Conversion. ACS Applied Nano Materials. 2020;3:850–7. https://doi.org/10.1021/acsanm.9b02362.
    [45] Eliezer S, et al. Synthesis of nanoparticles with femtosecond laser pulses. Physical Review B. 2004;69:144119. https://doi.org/10.1103/PhysRevB.69.144119.
    [46] Maximova K, Aristov A, Sentis M, Kabashin AV. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water. Nanotechnology. 2015;26:065601. https://doi.org/10.1088/0957-4484/26/6/065601.
    [47] Liu S-F, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science. 2022;377:1112–6. https://doi.org/10.1126/science.abo5345.
    [48] Yuan Y, et al. Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. Adv Mater. 2022;34:2110013. https://doi.org/10.1002/adma.202110013.
    [49] Xing J-F, Zheng M-L, Duan X-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev. 2015;44:5031–9. https://doi.org/10.1039/C5CS00278H.
    [50] Geng Q, Wang D, Chen P, Chen S-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 2019;10:2179. https://doi.org/10.1038/s41467-019-10249-2.
    [51] Kotz F, et al. Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures. Adv Mater. 2021;33:2006341. https://doi.org/10.1002/adma.202006341.
    [52] Hua JG, Liang SY, Chen QD, Juodkazis S, Sun HB. Free-Form Micro-Optics Out of Crystals: Femtosecond Laser 3D Sculpturing. Advanced Functional Materials n/a, 2200255, https://doi.org/10.1002/adfm.202200255 (2022).
    [53] Fang Y, et al. Liquid-Infused Slippery Stainless Steel Surface Prepared by Alcohol-Assisted Femtosecond Laser Ablation. Adv Mater Interfaces. 2021;8:2001334. https://doi.org/10.1002/admi.202001334.
    [54] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep Prog Phys. 2013;76:036502. https://doi.org/10.1088/0034-4885/76/3/036502.
    [55] Yu L, et al. Nanochannels with a 18-nm feature size and ultrahigh aspect ratio on silica through surface assisting material ejection. Adv Photonics Nexus. 2022;1:026004. https://doi.org/10.1117/1.APN.1.2.026004.
    [56] Stone A, et al. Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation. Opt Express. 2009;17:23284–9. https://doi.org/10.1364/OE.17.023284.
    [57] Miura K, Qiu J, Mitsuyu T, Hirao K. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt Lett. 2000;25:408–10. https://doi.org/10.1364/OL.25.000408.
    [58] Stone A, et al. Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers. J Non-Cryst Solids. 2010;356:3059–65. https://doi.org/10.1016/j.jnoncrysol.2010.03.048.
    [59] Zheng Y, et al. Valence state manipulation of Sm3+ ions via a phase-shaped femtosecond laser field. Photon Res. 2018;6:144–8. https://doi.org/10.1364/PRJ.6.000144.
    [60] Qiu J, et al. Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser. Appl Phys Lett. 2001;79:3567–9. https://doi.org/10.1063/1.1421640.
    [61] Royon A, et al. Silver Clusters Embedded in Glass as a Perennial High Capacity Optical Recording Medium. Adv Mater. 2010;22:5282–6. https://doi.org/10.1002/adma.201002413.
    [62] Tokel O, et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat Photonics. 2017;11:639–45. https://doi.org/10.1038/s41566-017-0004-4.
    [63] Liu X-Q, et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing. PhotoniX. 2022;3:1. https://doi.org/10.1186/s43074-022-00047-3.
    [64] Liu X-Q, Bai B-F, Chen Q-D, Sun H-B. Etching-assisted femtosecond laser modification of hard materials. Opto-Electronic Advances. 2019;2:190021–190021. https://doi.org/10.29026/oea.2019.190021.
    [65] Geng J, Yan W, Shi L, Qiu M. Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light. 2022;11:189. https://doi.org/10.1038/s41377-022-00883-9.
    [66] Li Z-Z, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light. 2020;9:41. https://doi.org/10.1038/s41377-020-0275-2.
    [67] Chen L, et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electronic Advances. 2021;4, 200036–200031–200036–200039, https://doi.org/10.29026/oea.2021.200036
    [68] Yong J, Chen F, Yang Q, Jiang Z, Hou X. A Review of Femtosecond-Laser-Induced Underwater Superoleophobic Surfaces. Adv Mater Interfaces. 2018;5:1701370. https://doi.org/10.1002/admi.201701370.
    [69] Vorobyev AY, Guo C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013;7:385–407. https://doi.org/10.1002/lpor.201200017.
    [70] Qiao M, Yan J, Jiang L. Direction Controllable Nano-Patterning of Titanium by Ultrafast Laser for Surface Coloring and Optical Encryption. Adv Opt Mater. 2022;10:2101673. https://doi.org/10.1002/adom.202101673.
    [71] Bonse J, Gräf S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photonics Rev. 2020;14:2000215. https://doi.org/10.1002/lpor.202000215.
    [72] Shimotsuma Y, Kazansky PG, Qiu J, Hirao K. Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses. Phys Rev Lett. 2003;91:247405. https://doi.org/10.1103/PhysRevLett.91.247405.
    [73] Öktem B, et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat Photonics. 2013;7:897–901. https://doi.org/10.1038/nphoton.2013.272.
    [74] Mastellone M, et al. Deep-Subwavelength 2D Periodic Surface Nanostructures on Diamond by Double-Pulse Femtosecond Laser Irradiation. Nano Lett. 2021;21:4477–83. https://doi.org/10.1021/acs.nanolett.1c01310.
    [75] Sun X-C, et al. Wafer-scale high aspect-ratio sapphire periodic nanostructures fabricated by self-modulated femtosecond laser hybrid technology. Opt Express. 2022;30:32244–55. https://doi.org/10.1364/OE.463575.
    [76] Huang M, Zhao F, Cheng Y, Xu N, Xu Z. Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser. ACS Nano. 2009;3:4062–70. https://doi.org/10.1021/nn900654v.
    [77] Liao Y, et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica. 2015;2:329–34. https://doi.org/10.1364/OPTICA.2.000329.
    [78] Zhang B, et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light. 2021;10:93. https://doi.org/10.1038/s41377-021-00534-5.
    [79] Rudenko A, et al. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci Rep. 2017;7:12306. https://doi.org/10.1038/s41598-017-12502-4.
    [80] Beresna M, Gecevičius M, Kazansky PG. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv Opt Photon. 2014;6:293–339. https://doi.org/10.1364/AOP.6.000293.
    [81] Buividas R, et al. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback. Nanotechnology. 2011;22:055304. https://doi.org/10.1088/0957-4484/22/5/055304.
    [82] Beresna M, Gecevičius M, Lancry M, Poumellec B, Kazansky PG. Broadband anisotropy of femtosecond laser induced nanogratings in fused silica. Appl Phys Lett. 2013;103:131903. https://doi.org/10.1063/1.4821513.
    [83] Cho S-H, Kumagai H, Midorikawa K. In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser. Optics Communications. 2002;207:243–53. https://doi.org/10.1016/S0030-4018(02)01410-4.
    [84] Davis KM, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett. 1996;21:1729–31. https://doi.org/10.1364/OL.21.001729.
    [85] Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances. Prog Quantum Electron. 2014;38:119–56. https://doi.org/10.1016/j.pquantelec.2014.03.002.
    [86] Sudrie L, Franco M, Prade B, Mysyrowicz A. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt Commun. 1999;171:279–84. https://doi.org/10.1016/S0030-4018(99)00562-3.
    [87] Kazansky PG, et al. Anomalous Anisotropic Light Scattering in Ge-Doped Silica Glass. Phys Rev Lett. 1999;82:2199–202. https://doi.org/10.1103/PhysRevLett.82.2199.
    [88] Qiu J, et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass. Appl Phys Lett. 2000;77:1940–2. https://doi.org/10.1063/1.1311956.
    [89] Hnatovsky C, et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl Phys Lett. 2005;87:014104. https://doi.org/10.1063/1.1991991.
    [90] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev. 2008;2:26–46. https://doi.org/10.1002/lpor.200710031.
    [91] Hnatovsky C, et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl Phys A. 2006;84:47–61. https://doi.org/10.1007/s00339-006-3590-4.
    [92] Sudrie L, et al. Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica. Phys Rev Lett. 2002;89:186601. https://doi.org/10.1103/PhysRevLett.89.186601.
    [93] Ohfuchi T, et al. Shape control of femtosecond-laser-induced birefringent structures by controlling spherical aberration. J Laser Appl. 2016;28:022603. https://doi.org/10.2351/1.4944115.
    [94] Lancry M, Brisset F, Poumellec B. In the heart of nanogratings made up during femtosecond laser irradiation, in Advanced Photonics & Renewable Energy, OSA Technical Digest (CD) (Optica Publishing Group, 2010), paper BWC3. https://opg.optica.org/abstract.cfm?URI=BGPP-2010-BWC3.
    [95] Ramirez LPR, et al. Tuning the structural properties of femtosecond-laser-induced nanogratings. Appl Phys A. 2010;100:1–6. https://doi.org/10.1007/s00339-010-5684-2.
    [96] Zhang F, Zhang H, Dong G, Qiu J. Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing. J Opt Soc Am B. 2014;31:860–4. https://doi.org/10.1364/JOSAB.31.000860.
    [97] Hnatovsky C, et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt Lett. 2005;30:1867–9. https://doi.org/10.1364/OL.30.001867.
    [98] Taylor RS, et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt Lett. 2007;32:2888–90. https://doi.org/10.1364/OL.32.002888.
    [99] Bricchi E, Kazansky PG. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl Phys Lett. 2006;88:111119. https://doi.org/10.1063/1.2185587.
    [100] Richter S, et al. Nanogratings in fused silica: Formation, control, and applications. J Laser Appl. 2012;24:042008. https://doi.org/10.2351/1.4718561.
    [101] Wang J, Liu X, Dai Y, Wang Z, Qiu J. Effect of sodium oxide content on the formation of nanogratings in germanate glass by a femtosecond laser. Opt Express. 2018;26:12761–8. https://doi.org/10.1364/OE.26.012761.
    [102] Asai T, et al. Systematic Control of Structural Changes in GeO2 Glass Induced by Femtosecond Laser Direct Writing. J Am Ceram Soc. 2015;98:1471–7. https://doi.org/10.1111/jace.13482.
    [103] Lancry M, et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 2013;7:953–62. https://doi.org/10.1002/lpor.201300043.
    [104] Bricchi E, Klappauf BG, Kazansky PG. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt Lett. 2004;29:119–21. https://doi.org/10.1364/OL.29.000119.
    [105] Hnatovsky C, Shvedov V, Krolikowski W, Rode A. Revealing Local Field Structure of Focused Ultrashort Pulses. Physical Review Letters. 2011;106:123901. https://doi.org/10.1103/PhysRevLett.106.123901.
    [106] Shugaev MV, et al. Fundamentals of ultrafast laser–material interaction. MRS Bull. 2016;41:960–8. https://doi.org/10.1557/mrs.2016.274.
    [107] Musgraves JD, Richardson K, Jain H. Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt Mater Express. 2011;1:921–35. https://doi.org/10.1364/OME.1.000921.
    [108] Wang Y, Lancry M, Cavillon M, Poumellec B. Lifetime prediction of nanogratings inscribed by a femtosecond laser in silica glass. Opt Lett. 2022;47:1242–5. https://doi.org/10.1364/OL.449486.
    [109] Richter S, et al. Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™. Opt Mater Express. 2013;3:1161–6. https://doi.org/10.1364/OME.3.001161.
    [110] Cao J, et al. Form birefringence induced in multicomponent glass by femtosecond laser direct writing. Opt Lett. 2016;41:2739–42. https://doi.org/10.1364/OL.41.002739.
    [111] Cao J, Mazerolles L, Lancry M, Brisset F, Poumellec B. Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure. J Opt Soc Am B. 2017;34:160–8. https://doi.org/10.1364/JOSAB.34.000160.
    [112] Cao J, Poumellec B, Brisset F, Lancry M. Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing. Opt Express. 2018;26:7460–74. https://doi.org/10.1364/OE.26.007460.
    [113] Cao J, et al. Femtosecond Laser-Induced Crystallization in Glasses: Growth Dynamics for Orientable Nanostructure and Nanocrystallization. Cryst Growth Des. 2019;19:2189–205. https://doi.org/10.1021/acs.cgd.8b01802.
    [114] Shimotsuma Y, et al. Self-assembled glass/crystal periodic nanostructure in Al2O3-Dy2O3 binary glass. Appl Phys A. 2018;124:82. https://doi.org/10.1007/s00339-017-1507-z.
    [115] Zhang B, et al. Self-Organized Periodic Crystallization in Unconventional Glass Created by an Ultrafast Laser for Optical Attenuation in the Broadband Near-Infrared Region. Advanced Optical Materials. 2019;7:1900593. https://doi.org/10.1002/adom.201900593.
    [116] Zhang B, et al. Ultrafast Laser Inducing Continuous Periodic Crystallization in the Glass Activated via Laser-Prepared Crystallite-Seeds. Adv Opt Mater. 2021;9:2001962. https://doi.org/10.1002/adom.202001962.
    [117] Kanehira S, Si J, Qiu J, Fujita K, Hirao K. Periodic Nanovoid Structures via Femtosecond Laser Irradiation. Nano Lett. 2005;5:1591–5. https://doi.org/10.1021/nl0510154.
    [118] Song J, et al. Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses. Appl Phys Lett. 2008;92:092904. https://doi.org/10.1063/1.2841066.
    [119] Song J, et al. Polarization dependence of the self-organized microgratings induced in SrTiO3 crystal by a single femtosecond laser beam. Opt Express. 2013;21:18461–8. https://doi.org/10.1364/OE.21.018461.
    [120] Hu X, et al. Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation. Journal of Applied Physics. 2007;101:023112. https://doi.org/10.1063/1.2430911.
    [121] Hu X, et al. Self-formation of void array in Al2O3 crystal by femtosecond laser irradiation. Chin Opt Lett. 2008;6:388–90.
    [122] Mauclair C, et al. Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses. Opt Lett. 2011;36:325–7. https://doi.org/10.1364/OL.36.000325.
    [123] Hu X, et al. Self-organized microvoid array perpendicular to the femtosecond laser beam in CaF2 crystals. Laser Phys Lett. 2008;5:394–7. https://doi.org/10.1002/lapl.200810006.
    [124] Song J, et al. Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens. J Phys D. 2011;44:495402. https://doi.org/10.1088/0022-3727/44/49/495402.
    [125] Luo F, et al. Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective’s immersion liquid. Opt Lett. 2011;36:2125–7. https://doi.org/10.1364/OL.36.002125.
    [126] Zhang F, et al. Polarization-dependent microstructural evolution induced by a femtosecond laser in an aluminosilicate glass. Opt Express. 2021;29:10265–74. https://doi.org/10.1364/OE.420595.
    [127] Sakakura M, Lei Y, Wang L, Yu Y-H, Kazansky PG. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light. 2020;9:15. https://doi.org/10.1038/s41377-020-0250-y.
    [128] Zhang F, et al. Self-assembled three-dimensional periodic micro-nano structures in bulk quartz crystal induced by femtosecond laser pulses. Opt Express. 2019;27:6442–50. https://doi.org/10.1364/OE.27.006442.
    [129] Zhang F, et al. Evolution of polarization dependent microstructures induced by high repetition rate femtosecond laser irradiation in glass. Opt Express. 2016;24:21353–63. https://doi.org/10.1364/OE.24.021353.
    [130] Karpinski P, Shvedov V, Krolikowski W, Hnatovsky C. Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate. Opt Express. 2016;24:7456–76. https://doi.org/10.1364/OE.24.007456.
    [131] Xu S, et al. Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements. Opt Lett. 2021;46:536–9. https://doi.org/10.1364/OL.413177.
    [132] Zhai Q, et al. Evolution of self-organized nanograting from the pre-induced nanocrack-assisted plasma–laser coupling in sapphire. Appl Phys B. 2021;127:74. https://doi.org/10.1007/s00340-021-07625-6.
    [133] Liu Z, et al. Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses. ACS Nano. 2017;11:5031–40. https://doi.org/10.1021/acsnano.7b01748.
    [134] Loeschner K, Seifert G, Heilmann A. Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation. J Appl Phys. 2010;108:073114. https://doi.org/10.1063/1.3490191.
    [135] Eles B, et al. Mechanisms driving self-organization phenomena in random plasmonic metasurfaces under multipulse femtosecond laser exposure: a multitime scale study. 2022;11, 2303-2318, https://doi.org/10.1515/nanoph-2022-0023
    [136] Wu, B. et al. (2023). Plasmon guided assembly of nanoparticles in solids. Materials Today Nano 21, 100299, https://doi.org/10.1016/j.mtnano.2022.100299.
    [137] Shimotsuma Y, Hirao K, Qiu J, Kazansky PG. Nano-modification inside transparent materials by femtosecond laser single beam. Mod Phys Lett B. 2005;19:225–38. https://doi.org/10.1142/S0217984905008281.
    [138] Rudenko A, Colombier J-P, Itina TE. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Physical Review B. 2016;93:075427. https://doi.org/10.1103/PhysRevB.93.075427.
    [139] Rudenko A, Colombier J-P, Itina TE, Stoian R. Genesis of Nanogratings in Silica Bulk via Multipulse Interplay of Ultrafast Photo-Excitation and Hydrodynamics. Adv Opt Mater. 2021;9:2100973. https://doi.org/10.1002/adom.202100973.
    [140] Muzi E, Cavillon M, Lancry M, Brisset F, Que R, Pugliese D, et al. Towards a Rationalization of Ultrafast Laser-Induced Crystallization in Lithium Niobium Borosilicate Glasses: The Key Role of the Scanning Speed. Crystals. 2021;11(3):290. https://doi.org/10.3390/cryst11030290.
    [141] Bhardwaj VR, et al. Optically Produced Arrays of Planar Nanostructures inside Fused Silica. Phys Rev Lett. 2006;96:057404. https://doi.org/10.1103/PhysRevLett.96.057404.
    [142] Rajeev PP, et al. Transient nanoplasmonics inside dielectrics. J Phys B: At Mol Opt Phys. 2007;40:S273–82. https://doi.org/10.1088/0953-4075/40/11/s03.
    [143] Sun H, et al. Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation. Appl Phys A. 2007;88:285–8. https://doi.org/10.1007/s00339-007-4012-y.
    [144] Liao Y, et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt Lett. 2015;40:3623–6. https://doi.org/10.1364/OL.40.003623.
    [145] Lei Y, et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica. 2021;8:1365–71. https://doi.org/10.1364/OPTICA.433765.
    [146] Yan Z, Gao J, Beresna M, Zhang J. Near-Field Mediated 40 nm In-Volume Glass Fabrication by Femtosecond Laser. Adv Opt Mater. 2022;10:2101676. https://doi.org/10.1002/adom.202101676.
    [147] Martin P, et al. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys Rev B. 1997;55:5799–810. https://doi.org/10.1103/PhysRevB.55.5799.
    [148] Petite G, Daguzan P, Guizard S, Martin P. Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study. Nucl Instrum Methods Phys Res, Sect B. 1996;107:97–101. https://doi.org/10.1016/0168-583X(95)00845-4.
    [149] Richter S, et al. The role of self-trapped excitons and defects in the formation of nanogratings in fused silica. Opt Lett. 2012;37:482–4. https://doi.org/10.1364/OL.37.000482.
    [150] Dai Y, Wu G, Lin X, Ma G, Qiu J. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica. Opt Express. 2012;20:18072–8. https://doi.org/10.1364/OE.20.018072.
    [151] Lei Y, et al. Efficient ultrafast laser writing with elliptical polarization. Light. 2023;12:74. https://doi.org/10.1038/s41377-023-01098-2.
    [152] Gaizauskas E, et al. Discrete damage traces from filamentation of Gauss-Bessel pulses. Opt Lett. 2006;31:80–2. https://doi.org/10.1364/OL.31.000080.
    [153] Bricchi E, Mills JD, Kazansky PG, Klappauf BG, Baumberg JJ. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett. 2002;27:2200–2. https://doi.org/10.1364/OL.27.002200.
    [154] Tian J, et al. A Comparison between Nanogratings-Based and Stress-Engineered Waveplates Written by Femtosecond Laser in Silica. Micromachines. 2020;11, https://doi.org/10.3390/mi11020131
    [155] Ohfuchi T, et al. Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass. Opt Express. 2017;25:23738–54. https://doi.org/10.1364/OE.25.023738.
    [156] Lammers K, et al. Embedded nanograting-based waveplates for polarization control in integrated photonic circuits. Opt Mater Express. 2019;9:2560–72. https://doi.org/10.1364/OME.9.002560.
    [157] Beresna M, Kazansky PG. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass. Opt Lett. 2010;35:1662–4. https://doi.org/10.1364/OL.35.001662.
    [158] Cai W, Libertun AR, Piestun R. Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings. Opt Express. 2006;14:3785–91. https://doi.org/10.1364/OE.14.003785.
    [159] Zhang F, Yu Y, Cheng C, Dai Y, Qiu J. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser. Opt Lett. 2013;38:2212–4. https://doi.org/10.1364/OL.38.002212.
    [160] Zhang F, et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing. Appl Phys B. 2014;117:53–8. https://doi.org/10.1007/s00340-014-5797-y.
    [161] Cavillon M, et al. Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres. J Phys. 2019;1:042001. https://doi.org/10.1088/2515-7647/ab382f.
    [162] Mihailov SJ, Hnatovsky C, Grobnic D, Chen K, Li M. Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber. IEEE Photonics Technol Lett. 2018;30:209–12. https://doi.org/10.1109/LPT.2017.2782368.
    [163] Hnatovsky C, Grobnic D, Coulas D, Barnes M, Mihailov SJ. Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings. Opt Lett. 2017;42:399–402. https://doi.org/10.1364/OL.42.000399.
    [164] Li J, Ho S, Haque M, Herman PR. Nanograting Bragg responses of femtosecond laser written optical waveguides in fused silica glass. Opt Mater Express. 2012;2:1562–70. https://doi.org/10.1364/OME.2.001562.
    [165] Beresna M, Gecevičius M, Kazansky PG, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett. 2011;98:201101. https://doi.org/10.1063/1.3590716.
    [166] Zhang F, Cerkauskaite A, Drevinskas R, Kazansky PG, Qiu J. Microengineering of Optical Properties of GeO2 Glass by Ultrafast Laser Nanostructuring. Adv Opt Mater. 2017;5:1700342. https://doi.org/10.1002/adom.201700342.
    [167] Beresna M, Gecevičius M, Kazansky PG. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt Mater Express. 2011;1:783–95. https://doi.org/10.1364/OME.1.000783.
    [168] Zhang B, Liu X, Qiu J. Single femtosecond laser beam induced nanogratings in transparent media - Mechanisms and applications. J Materiomics. 2019;5:1–14. https://doi.org/10.1016/j.jmat.2019.01.002.
    [169] Lu J, et al. Fiber nanogratings induced by femtosecond pulse laser direct writing for in-line polarizer. Nanoscale. 2019;11:908–14. https://doi.org/10.1039/C8NR06078A.
    [170] He J, Xu B, Xu X, Liao C, Wang Y. Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications. Photonic Sens. 2021;11:203–26. https://doi.org/10.1007/s13320-021-0629-2.
    [171] Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. López-Higuera, J. M. (2020).Optical Fiber Sensors by Direct Laser Processing: A Review. Sensors 20, https://doi.org/10.3390/s20236971
    [172] Wang M, et al. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications. Int J Extreme Manuf. 2021;3:025401. https://doi.org/10.1088/2631-7990/abe171.
    [173] Kaisler S, Armour F, Espinosa JA. Money, W. in 2013 46th Hawaii International Conference on System Sciences. 995–1004.
    [174] Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage. Nat Rev Mater. 2016;1:16070. https://doi.org/10.1038/natrevmats.2016.70.
    [175] Zhang Q, Xia Z, Cheng Y-B, Gu M. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat Commun. 2018;9:1183. https://doi.org/10.1038/s41467-018-03589-y.
    [176] Gu M, Li X, Cao Y. Optical storage arrays: a perspective for future big data storage. Light. 2014;3:e177–e177. https://doi.org/10.1038/lsa.2014.58.
    [177] Zhu L, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electronic Advances. 2021;4:210002. https://doi.org/10.29026/oea.2021.210002.
    [178] Wang Z, Zhang B, Tan D, Qiu J. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence. Opto-Electronic Advances. 2023;6, 220008–220001–220008–220008, https://doi.org/10.29026/oea.2023.220008
    [179] Shimotsuma Y, et al. Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass. Adv Mater. 2010;22:4039–43. https://doi.org/10.1002/adma.201000921.
    [180] Zhang J, Gecevičius M, Beresna M, Kazansky PG. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass. Phys Rev Lett. 2014;112:033901. https://doi.org/10.1103/PhysRevLett.112.033901.
    [181] Yan Z, et al. Anisotropic nanostructure generated by a spatial-temporal manipulated picosecond pulse for multidimensional optical data storage. Opt Lett. 2021;46:5485–8. https://doi.org/10.1364/OL.443370.
    [182] Wang H, et al. 100-Layer Error-Free 5D Optical Data Storage by Ultrafast Laser Nanostructuring in Glass. Laser & Photonics Reviews 2022;n/a, 2100563, https://doi.org/10.1002/lpor.202100563
    [183] Liao Y, et al. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt Lett. 2013;38:187–9. https://doi.org/10.1364/OL.38.000187.
    [184] Liao Y, et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip. 2013;13:1626–31. https://doi.org/10.1039/C3LC41171K.
    [185] Haque M, Lee KKC, Ho S, Fernandes LA, Herman PR. Chemical-assisted femtosecond laser writing of lab-in-fibers. Lab Chip. 2014;14:3817–29. https://doi.org/10.1039/C4LC00648H.
    [186] Ródenas A, et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics. 2019;13:105–9. https://doi.org/10.1038/s41566-018-0327-9.
    [187] Sima F, et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. 7, 613-634, doi:https://doi.org/10.1515/nanoph-2017-0097 (2018).
    [188] Osellame R, Hoekstra HJWM, Cerullo G, Pollnau M. Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011;5:442–63. https://doi.org/10.1002/lpor.201000031.
    [189] Marcinkevičius A, et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett. 2001;26:277–9. https://doi.org/10.1364/OL.26.000277.
    [190] Qi J, et al. Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source. Opt Express. 2018;26:29669–78. https://doi.org/10.1364/OE.26.029669.
    [191] Yu X, et al. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses. J Appl Phys. 2011;109:053114. https://doi.org/10.1063/1.3555080.
    [192] Lu J, et al. Tailoring chiral optical properties by femtosecond laser direct writing in silica. Light. 2023;12:46. https://doi.org/10.1038/s41377-023-01080-y.
    [193] Ashoka A, et al. Extracting quantitative dielectric properties from pump-probe spectroscopy. Nat Commun. 2022;13:1437. https://doi.org/10.1038/s41467-022-29112-y.
    [194] Yao Y, et al. Single-Shot Real-Time Ultrafast Imaging of Femtosecond Laser Fabrication. ACS Photonics. 2021;8:738–44. https://doi.org/10.1021/acsphotonics.1c00043.
    [195] Yang C, et al. Single-Shot Receive-Only Ultrafast Electro-Optical Deflection Imaging. Phys Rev Appl. 2020;13:024001. https://doi.org/10.1103/PhysRevApplied.13.024001.
    [196] Lamon S, Wu Y, Zhang Q, Liu X, Gu M. Nanoscale optical writing through upconversion resonance energy transfer. Science Advances 7, eabe2209, https://doi.org/10.1126/sciadv.abe2209.
    [197] Salter PS, Booth MJ. Adaptive optics in laser processing. Light. 2019;8:110. https://doi.org/10.1038/s41377-019-0215-1.
    [198] Wang H, et al. Two-Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Advanced Functional Materials. 2023; n/a, 2214211, https://doi.org/10.1002/adfm.202214211
    [199] Malevich P, et al. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers. Opt Lett. 2013;38:2746–9. https://doi.org/10.1364/OL.38.002746.
    [200] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics. 2020;14:102–8. https://doi.org/10.1038/s41566-019-0560-x.
    [201] Xinyuan F, et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv Photonics. 2021;3:1–7. https://doi.org/10.1117/1.AP.3.1.015001.
    [202] Bozinovic N, et al. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science. 2013;340:1545–8. https://doi.org/10.1126/science.1237861.
  • 加载中
图(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 录用日期:  2023-07-12
  • 修回日期:  2023-06-24
  • 网络出版日期:  2023-07-25

目录

    /

    返回文章
    返回