留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices

Leiming Wu Xixi Yuan Yuxuan Tang S. Wageh Omar A. Al-Hartomy Abdullah G. Al-Sehemi Jun Yang Yuanjiang Xiang Han Zhang Yuwen Qin

Leiming Wu, Xixi Yuan, Yuxuan Tang, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Jun Yang, Yuanjiang Xiang, Han Zhang, Yuwen Qin. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX. doi: 10.1186/s43074-023-00091-7
引用本文: Leiming Wu, Xixi Yuan, Yuxuan Tang, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Jun Yang, Yuanjiang Xiang, Han Zhang, Yuwen Qin. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX. doi: 10.1186/s43074-023-00091-7
Leiming Wu, Xixi Yuan, Yuxuan Tang, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Jun Yang, Yuanjiang Xiang, Han Zhang, Yuwen Qin. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX. doi: 10.1186/s43074-023-00091-7
Citation: Leiming Wu, Xixi Yuan, Yuxuan Tang, S. Wageh, Omar A. Al-Hartomy, Abdullah G. Al-Sehemi, Jun Yang, Yuanjiang Xiang, Han Zhang, Yuwen Qin. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX. doi: 10.1186/s43074-023-00091-7

MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices

doi: 10.1186/s43074-023-00091-7

MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices

Funds: Leiming Wu, Xixi Yuan, and Yuxuan Tang contributed equally to this work, and the authors would like to thank Prof. S. Wageh, Omar A. Al-Hartomy, and Abdullah G. Al-Sehemi for their helpful discussions.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] He Y, Yang J. Polarization Estimation with a Single Vector Sensor for Radar Detection. Remote Sens Basel. 2022;14(5):1137.
    [2] Wu J, Ma D, Wang W, Han Z. Research on Sensor Placement for Disaster Prevention in Water Distribution Networks for Important Users. Sustainability. 2020;12(2):723.
    [3] Jiang L, Lv S, Tang W, et al. YSZ-based acetone sensor using a Cd2SnO4 sensing electrode for exhaled breath detection in medical diagnosis. Sensor Actuat B Chem. 2021;345:130321.
    [4] Verma G, Sharma V. A Novel RF Energy Harvester for Event-Based Environmental Monitoring in Wireless Sensor Networks. IEEE Internet Things J. 2022;9(5):3189–203.
    [5] Luo J, Yang Y, Wang Z, Chen Y. Localization Algorithm for Underwater Sensor Network: A Review. IEEE Internet Things J. 2021;8(17):13126–44.
    [6] She S, Liu Y, Zhang S, et al. Flexible Differential Butterfly-Shape Eddy Current Array Sensor for Defect Detection of Screw Thread. IEEE Sens J. 2021;21(18):20764–77.
    [7] Fathi F, Mohammadzadeh-Aghdash H, Sohrabi Y, Dehghan P, Ezzati Nazhad Dolatabadi J. Kinetic and thermodynamic studies of bovine serum albumin interaction with ascorbyl palmitate and ascorbyl stearate food additives using surface plasmon resonance. Food Chem. 2018;246:228–32.
    [8] Li K, Liang M, Wang H, et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv Funct Mater. 2020;30(47):2000842.
    [9] Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv Mater. 2014;26(7):992–1005.
    [10] Shi C, Beidaghi M, Naguib M, Mashtalir O, Gogotsi Y, Billinge SJL. Structure of Nanocrystalline Ti3C2 MXene Using Atomic Pair Distribution Function. Phys Rev Lett. 2014;112(12):125501.
    [11] Dillon AD, Ghidiu MJ, Krick AL, et al. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv Funct Mater. 2016;26(23):4162–8.
    [12] Lee E, VahidMohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim D-J. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl Mater Interfaces. 2017;9(42):37184–90.
    [13] Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–53.
    [14] Lei Y-J, Yan Z-C, Lai W-H, et al. Tailoring MXene-Based Materials for Sodium-Ion Storage: Synthesis, Mechanisms, and Applications. Electrochem Energy Rev. 2020;3(4):766–92.
    [15] Liu J, Jiang X, Zhang R, et al. MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv Funct Mater. 2019;29(6):1807326.
    [16] Mariano M, Mashtalir O, Antonio FQ, et al. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale. 2016;8(36):16371–8.
    [17] Shahzad F, Alhabeb M, Hatter Christine B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353(6304):1137–40.
    [18] Liu L-X, Chen W, Zhang H-B, et al. Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency. Nano-Micro Lett. 2022;14(1):111.
    [19] Shein IR, Ivanovskii AL. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comp Mater Sci. 2012;65:104–14.
    [20] Zhang C, Ma Y, Zhang X, et al. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ Mater. 2020;3(1):29–55.
    [21] Chao M, He L, Gong M, et al. Breathable Ti3C2Tx MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano. 2021;15(6):9746–58.
    [22] Cheng Y, Ma Y, Li L, et al. Bioinspired Microspines for a High-Performance Spray Ti3C2Tx MXene-Based Piezoresistive Sensor. ACS Nano. 2020;14(2):2145–55.
    [23] Liu L-X, Chen W, Zhang H-B, Wang Q-W, Guan F, Yu Z-Z. Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity. Adv Funct Mater. 2019;29(44):1905197.
    [24] Tan H, Tao Q, Pande I, et al. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat Commun. 2020;11(1):1369.
    [25] Wang H, Cai L, Wang Y, Liu C, Fang G, Wang S. Covalent molecularly imprinted electrochemical sensor modulated by borate ester bonds for hygromycin B detection based on the synergistic signal amplification of Cu-MOF and MXene. Food Chem. 2022;383:132382.
    [26] Wu Q, Li N, Wang Y, et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens Bioelectron. 2019;144:111697.
    [27] Lian P, Dong Y, Wu Z-S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy. 2017;40:1–8.
    [28] Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012;6(2):1322–31.
    [29] Lee SH, Eom W, Shin H, et al. Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl Mater Interfaces. 2020;12(9):10434–42.
    [30] Shi L-N, Cui L-T, Ji Y-R, Xie Y, Zhu Y-R, Yi T-F. Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coordin Chem Rev. 2022;469:214668.
    [31] Jiang X, Liu S, Liang W, et al. Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018;12(2):1700229.
    [32] Wu L, Jiang X, Zhao J, et al. MXene-Based Nonlinear Optical Information Converter for All-Optical Modulator and Switcher. Laser Photonics Rev. 2018;12(12):1800215.
    [33] Huang K, Li C, Li H, et al. Photocatalytic Applications of Two-Dimensional Ti3C2 MXenes: A Review. ACS Appl Nano Mater. 2020;3(10):9581–603.
    [34] Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Design. 2017;114:161–6.
    [35] Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516(7529):78–81.
    [36] Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv Electron Mater. 2016;2(12):1600255.
    [37] Li T, Yao L, Liu Q, et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew Chem Int Edit. 2018;57(21):6115–9.
    [38] Xuan J, Wang Z, Chen Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem. 2016;128(47):14789–94.
    [39] Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem. 2018;130(47):15717–21.
    [40] Li M, Lu J, Luo K, et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J of the Am Chem Soc. 2019;141(11):4730–7.
    [41] Li Y, Shao H, Lin Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894–9.
    [42] Mashtalir O, Lukatskaya MR, Zhao M-Q, Barsoum MW, Gogotsi Y. Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. Adv Mater. 2015;27(23):3501–6.
    [43] Naguib M, Unocic RR, Armstrong BL, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton T. 2015;44(20):9353–8.
    [44] Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4(1):1716.
    [45] Li X, Huang Z, Zhi C. Environmental Stability of MXenes as Energy Storage Materials. Front Mater. 2019;6:312.
    [46] Liu P, Ding W, Liu J, et al. Surface termination modification on high-conductivity MXene film for energy conversion. J Alloy Compd. 2020;829:154634.
    [47] Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the Synthesis of 2D MXenes. Adv Mater. 2021;33(39):2103148.
    [48] Chen N, Duan Z, Cai W, et al. Supercritical etching method for the large-scale manufacturing of MXenes. Nano Energy. 2023;107:108147.
    [49] Berdiyorov GR. Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations. AIP Adv. 2016;6(5):055105.
    [50] Borysiuk VN, Mochalin VN, Gogotsi Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology. 2015;26(26):265705.
    [51] Li R, Sun W, Zhan C, Kent PRC, Jiang D-E. Interfacial and electronic properties of heterostructures of MXene and graphene. Physical Review B. 2019;99(8):085429.
    [52] Zhang C. Interfacial assembly of two-dimensional MXenes. J Energy Chem. 2021;60:417–34.
    [53] Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem Mater. 2017;29(11):4848–56.
    [54] Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.
    [55] Wang K, Zhou Y, Xu W, Huang D, Wang Z, Hong M. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram Int. 2016;42(7):8419–24.
    [56] Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B. 2015;191:33–40.
    [57] Berdiyorov GR. Optical properties of functionalized Ti3C2T2 (T= F, O, OH) MXene: First-principles calculations. Aip Adv. 2016;6(5): 055105.
    [58] Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram Int. 2019;45(15):18167–88.
    [59] Hantanasirisakul K, Zhao M-Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv Electron Mater. 2016;2(6):1600050.
    [60] Zhang C, Anasori B, Seral-Ascaso A, et al. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv Mater. 2017;29(36):1702678.
    [61] Maleski K, Ren CE, Zhao M-Q, Anasori B, Gogotsi Y. Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Appl Mater Interfaces. 2018;10(29):24491–8.
    [62] Dong Y, Chertopalov S, Maleski K, et al. Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes. Adv Mater. 2018;30(10):1705714.
    [63] Wang C, Wang Y, Jiang X, et al. MXene Ti3C2Tx: A Promising Photothermal Conversion Material and Application in All-Optical Modulation and All-Optical Information Loading. Adv Opt Mater. 2019;7(12):1900060.
    [64] Wu Q, Huang W, Wang Y, et al. All-Optical Control of Microfiber Knot Resonator Based on 2D Ti2CTx MXene. Adv Opt Mater. 2020;8(7):1900977.
    [65] Wang D, Zhang D, Li P, Yang Z, Mi Q, Yu L. Electrospinning of Flexible Poly(vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator. Nano-Micro Lett. 2021;13(1):57.
    [66] Peng Q, Guo J, Zhang Q, et al. Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. J Am Chem Soc. 2014;136(11):4113–6.
    [67] Yang Z, Liu A, Wang C, et al. Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment. ACS Sensors. 2019;4(5):1261–9.
    [68] Lashgari H, Abolhassani MR, Boochani A, Elahi SM, Khodadadi J. Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Commun. 2014;195:61–9.
    [69] Ling Z, Ren Chang E, Zhao M-Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. P Natl Acad Sci USA. 2014;111(47):16676–81.
    [70] Kurtoglu M, Naguib M, Gogotsi Y, Barsoum MW. First principles study of two-dimensional early transition metal carbides. MRS Commun. 2012;2(4):133–7.
    [71] Li S-N, Yu Z-R, Guo B-F, et al. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2Tx MXene hydrogels for wide-temperature strain sensing. Nano Energy. 2021;90:106502.
    [72] Li Y, Zhang X. Electrically Conductive, Optically Responsive, and Highly Orientated Ti3C2Tx MXene Aerogel Fibers. Adv Funct Mater. 2022;32(4):2107767.
    [73] Park TH, Yu S, Koo M, et al. Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS Nano. 2019;13(6):6835–44.
    [74] Wang Q-W, Zhang H-B, Liu J, et al. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv Funct Mater. 2019;29(7):1806819.
    [75] Zeng S, Baillargeat D, Ho H-P, Yong K-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43(10):3426–52.
    [76] Wu L, Guo J, Wang Q, et al. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensor Actuat B Chem. 2017;249:542–8.
    [77] Wu L, Jia Y, Jiang L, et al. Sensitivity Improved SPR Biosensor Based on the MoS2/Graphene–Aluminum Hybrid Structure. J Lightwave Technol. 2017;35(1):82–7.
    [78] Xue T, Liang W, Li Y, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun. 2019;10(1):28.
    [79] Wu L, Chu HS, Koh WS, Li EP. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express. 2010;18(14):14395–400.
    [80] Zeng S, Sreekanth KV, Shang J, et al. Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing. Adv Mater. 2015;27(40):6163–9.
    [81] Wu L, You Q, Shan Y, et al. Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity. Sensor Actuat B Chem. 2018;277:210–5.
    [82] Xu Y, Ang YS, Wu L, Ang LK. High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials. 2019;9(2):165.
    [83] Chen Y, Ge Y, Huang W, et al. Refractive Index Sensors Based on Ti3C2Tx MXene Fibers. ACS Appl Nano Mater. 2020;3(1):303–11.
    [84] Aaryashree, Shinde PV, Kumar A, Late DJ, Rout CS. Recent advances in 2D black phosphorus based materials for gas sensing applications. J Mater Chem C 2021; 9(11):3773–94.
    [85] Gao Y, Wang J, Feng Y, et al. Carbon-Iron Electron Transport Channels in Porphyrin-Graphene Complex for ppb-Level Room Temperature NO Gas Sensing. Small. 2022;18(11):2103259.
    [86] Gogotsi Y, Anasori B. The Rise of MXenes. ACS Nano. 2019;13(8):8491–4.
    [87] Kim SJ, Koh H-J, Ren CE, et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano. 2018;12(2):986–93.
    [88] Chen WY, Jiang X, Lai S-N, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302.
    [89] Zhao L, Wang K, Wei W, Wang L, Han W. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat. 2019;1(3):407–16.
    [90] Zhou Y, Wang Y, Wang Y, et al. MXene Ti3C2Tx-Derived Nitrogen-Functionalized Heterophase TiO2 Homojunctions for Room-Temperature Trace Ammonia Gas Sensing. ACS Appl Mater Interfaces. 2021;13(47):56485–97.
    [91] Zhi H, Zhang X, Wang F, Wan P, Feng L. Flexible Ti3C2Tx MXene/PANI/Bacterial Cellulose Aerogel for e-Skins and Gas Sensing. ACS Appl Mater Interfaces. 2021;13(38):45987–94.
    [92] Wang J, Yang Y, Xia Y. Mesoporous MXene/ZnO nanorod hybrids of high surface area for UV-activated NO2 gas sensing in ppb-level. Sensor Actuat B Chem. 2022;353:131087.
    [93] Yuan W, Yang K, Peng H, Li F, Yin F. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J Mater Chem A. 2018;6(37):18116–24.
    [94] Shuck CE, Han M, Maleski K, et al. Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene. ACS Appl Nano Mater. 2019;2(6):3368–76.
    [95] Jin L, Wu C, Wei K, et al. Polymeric Ti3C2Tx MXene Composites for Room Temperature Ammonia Sensing. ACS Appl Nano Mater. 2020;3(12):12071–9.
    [96] Tai H, Duan Z, He Z, et al. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sensor Actuat B Chem. 2019;298:126874.
    [97] Wu M, He M, Hu Q, et al. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sensors. 2019;4(10):2763–70.
    [98] Sun S, Wang M, Chang X, et al. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensor Actuat B Chem. 2020;304:127274.
    [99] Choi J, Kim Y-J, Cho S-Y, et al. In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and its Application in Highly Sensitive Gas Sensors. Adv Funct Mater. 2020;30(40):2003998.
    [100] Sun Q, Wang J, Wang X, et al. Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale. 2020;12(32):16987–94.
    [101] Chen WY, Lai S-N, Yen C-C, Jiang X, Peroulis D, Stanciu LA. Surface Functionalization of Ti3C2Tx MXene with Highly Reliable Superhydrophobic Protection for Volatile Organic Compounds Sensing. ACS Nano. 2020;14(9):11490–501.
    [102] Wang J, Xu R, Xia Y, Komarneni S. Ti2CTx MXene: A novel p-type sensing material for visible light-enhanced room temperature methane detection. Ceram Int. 2021;47(24):34437–42.
    [103] Xia Y, He S, Wang J, Zhou L, Wang J, Komarneni S. MXene/WS2 hybrids for visible-light-activated NO2 sensing at room temperature. Chem Commun. 2021;57(72):9136–9.
    [104] Zhang D, Mi Q, Wang D, Li T. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sensor Actuat B Chem. 2021;339:129923.
    [105] Yang Z, Jiang L, Wang J, et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensor Actuat B Chem. 2021;326:128828.
    [106] Peng X, Zhang Y, Lu D, Guo Y, Guo S. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sensor Actuat B Chem. 2019;286:222–9.
    [107] Wang Z, Xuan J, Zhao Z, Li Q, Geng F. Versatile Cutting Method for Producing Fluorescent Ultrasmall MXene Sheets. ACS Nano. 2017;11(11):11559–65.
    [108] Desai ML, Basu H, Singhal RK, Saha S, Kailasa SK. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloid Surface A. 2019;565:70–7.
    [109] Chen X, Sun X, Xu W, et al. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale. 2018;10(3):1111–8.
    [110] Guan Q, Ma J, Yang W, et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale. 2019;11(30):14123–33.
    [111] Xue Q, Zhang H, Zhu M, et al. Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging. Adv Mater. 2017;29(15):1604847.
    [112] Bhardwaj SK, Singh H, Khatri M, Kim K-H, Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens Bioelectron. 2022;202:113995.
    [113] Zhu X, Fan L, Wang S, et al. Phospholipid-Tailored Titanium Carbide Nanosheets as a Novel Fluorescent Nanoprobe for Activity Assay and Imaging of Phospholipase D. Anal Chem. 2018;90(11):6742–8.
    [114] Pandey P, Sengupta A, Parmar S, et al. CsPbBr3–Ti3C2Tx MXene QD/QD Heterojunction: Photoluminescence Quenching, Charge Transfer, and Cd Ion Sensing Application. ACS Appl Nano Mater. 2020;3(4):3305–14.
    [115] Liu M, He Y, Zhou J, Ge Y, Zhou J, Song G. A ’’naked-eye’’ colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta. 2020;1103:134–42.
    [116] Luo W, Liu H, Liu X, Liu L, Zhao W. Biocompatibility nanoprobe of MXene N-Ti3C2 quantum dot/Fe3+ for detection and fluorescence imaging of glutathione in living cells. Colloid Surface B. 2021;201:111631.
    [117] Wang S, Wei S, Wang S, et al. Chimeric DNA-Functionalized Titanium Carbide MXenes for Simultaneous Mapping of Dual Cancer Biomarkers in Living Cells. Anal Chem. 2019;91(2):1651–8.
    [118] Zhu X, Pang X, Zhang Y, Yao S. Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. J Mater Chem B. 2019;7(48):7729–35.
    [119] Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y. Universal Ti3C2 MXenes Based Self-Standard Ratiometric Fluorescence Resonance Energy Transfer Platform for Highly Sensitive Detection of Exosomes. Anal Chem. 2018;90(21):12737–44.
    [120] Chen F, Lu Q, Zhang Y, Yao S. Strand displacement dual amplification miRNAs strategy with FRET between NaYF4:Yb, Tm/Er upconversion nanoparticles and Ti3C2 nanosheets. Sensor Actuat B Chem. 2019;297:126751.
    [121] Shi Y-E, Han F, Xie L, et al. A MXene of type Ti3C2Tx functionalized with copper nanoclusters for the fluorometric determination of glutathione. Microchim Acta. 2019;187(1):38.
    [122] Wang S, Song W, Wei S, et al. Functional Titanium Carbide MXenes-Loaded Entropy-Driven RNA Explorer for Long Noncoding RNA PCA3 Imaging in Live Cells. Anal Chem. 2019;91(13):8622–9.
    [123] Wang S, Zeng P, Zhu X, Lei C, Huang Y, Nie Z. Chimeric Peptides Self-Assembling on Titanium Carbide MXenes as Biosensing Interfaces for Activity Assay of Post-translational Modification Enzymes. Anal Chem. 2020;92(13):8819–26.
    [124] Hong J, Wang W, Wang J, et al. A turn-on–type fluorescence resonance energy transfer aptasensor for vibrio detection using aptamer-modified polyhedral oligomeric silsesquioxane-perovskite quantum dots/Ti3C2 MXenes composite probes. Microchim Acta. 2021;188(2):45.
    [125] Lu L, Han X, Lin J, et al. Ultrasensitive fluorometric biosensor based on Ti3C2 MXenes with Hg2+-triggered exonuclease III-assisted recycling amplification. Analyst. 2021;146(8):2664–9.
    [126] Cui H, Fu X, Yang L, Xing S, Wang X-F. 2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin. Talanta. 2021;228:122219.
    [127] Xu G, Niu Y, Yang X, et al. Preparation of Ti3C2Tx MXene-Derived Quantum Dots with White/Blue-Emitting Photoluminescence and Electrochemiluminescence. Adv Opt Mater. 2018;6(24):1800951.
    [128] Guo Z, Zhu X, Wang S, et al. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale. 2018;10(41):19579–85.
    [129] Liu M, Zhou J, He Y, et al. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim Acta. 2019;186(12):770.
    [130] Lu Q, Wang J, Li B, et al. Dual-Emission Reverse Change Ratio Photoluminescence Sensor Based on a Probe of Nitrogen-Doped Ti3C2 Quantum Dots@DAP to Detect H2O2 and Xanthine. Anal Chem. 2020;92(11):7770–7.
    [131] Liu M, Bai Y, He Y, et al. Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim Acta. 2021;188(1):15.
    [132] Wang X, Zhang X, Cao H, Huang Y. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B. 2020;8(47):10837–44.
    [133] Zhang Q, Sun Y, Liu M, Liu Y. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale. 2020;12(3):1826–32.
    [134] Feng Y, Zhou F, Deng Q, Peng C. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram Int. 2020;46(6):8320–7.
    [135] Bai Y, He Y, Wang M, Song G. Microwave-assisted synthesis of nitrogen, phosphorus-doped Ti3C2 MXene quantum dots for colorimetric/fluorometric dual-modal nitrite assay with a portable smartphone platform. Sensor Actuat B Chem. 2022;357:131410.
    [136] Cong S, Wang Z, Gong W, et al. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nat Commun. 2019;10(1):678.
    [137] Zhang X, Zhang X, Luo C, et al. Volume-Enhanced Raman Scattering Detection of Viruses. Small. 2019;15(11):1805516.
    [138] Lee HG, Choi W, Yang SY, et al. PCR-coupled Paper-based Surface-enhanced Raman Scattering (SERS) Sensor for Rapid and Sensitive Detection of Respiratory Bacterial DNA. Sensor Actuat B Chem. 2021;326:128802.
    [139] Yang E, Li D, Yin P, et al. A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker. Biosens Bioelectron. 2021;172:112758.
    [140] Wang T, Wang S, Cheng Z, et al. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem Eng J. 2021;424:130323.
    [141] Yu H, Wang M, Cao J, et al. Determination of Dichlorvos in Pears by Surface-Enhanced Raman Scattering (SERS) with Catalysis by Platinum Coated Gold Nanoparticles. Anal Lett. 2022;55(3):427–37.
    [142] Chen C, Wang X, Waterhouse GIN, Qiao X, Xu Z. A surface-imprinted surface-enhanced Raman scattering sensor for histamine detection based on dual semiconductors and Ag nanoparticles. Food Chem. 2022;369:130971.
    [143] Zhang D, Pu H, Huang L, Sun D-W. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci Tech. 2021;109:690–701.
    [144] Dong J-C, Zhang X-G, Briega-Martos V, et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat Energy. 2019;4(1):60–7.
    [145] Zheng F, Ke W, Shi L, Liu H, Zhao Y. Plasmonic Au–Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin A Detection. Anal Chem. 2019;91(18):11812–20.
    [146] Karthick Kannan P, Shankar P, Blackman C, Chung C-H. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv Mater. 2019;31(34):1803432.
    [147] Wu Z, Sun D-W, Pu H, Wei Q, Lin X. Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chem. 2022;372:131293.
    [148] Medetalibeyoglu H, Kotan G, Atar N, Yola ML. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Anal Chim Acta. 2020;1139:100–10.
    [149] Liu R, Jiang L, Yu Z, et al. MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy. Sensor Actuat B Chem. 2021;333:129581.
    [150] Xie X, Zhu Y, Li F, Zhou X, Xue T. Preparation and characterization of Ti3C2Tx with SERS properties. Sci China Technol Sci. 2019;62(7):1202–9.
    [151] Wang Y, Wang S, Dong N, Kang W, Li K, Nie Z. Titanium Carbide MXenes Mediated In Situ Reduction Allows Label-Free and Visualized Nanoplasmonic Sensing of Silver Ions. Anal Chem. 2020;92(6):4623–9.
    [152] Tao Y, Yi K, Wang H, et al. CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA. J Colloid Inter Sci. 2022;613:406–14.
    [153] Li M, Peng X, Han Y, Fan L, Liu Z, Guo Y. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem J. 2021;166:106238.
    [154] Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev. 2018;47(11):4017–72.
    [155] Wang Y, Counihan MJ, Lin JW, Rodríguez-López J, Yang H, Lu Y. Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals. J Am Chem Soc. 2020;142(48):20368–79.
    [156] Xu F, Qing T, Qing Z. DNA-coded metal nano-fluorophores: Preparation, properties and applications in biosensing and bioimaging. Nano Today. 2021;36:101021.
    [157] Li H, Wen Y, Zhu X, Wang J, Zhang L, Sun B. Novel Heterostructure of a MXene@NiFe-LDH Nanohybrid with Superior Peroxidase-Like Activity for Sensitive Colorimetric Detection of Glutathione. ACS Sustainable Chem Eng. 2020;8(1):520–6.
    [158] Liu J, Lu W, Lu X, Zhang L, Dong H, Li Y. Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 2022;15(3):2558–66.
    [159] Li Y, Kang Z, Kong L, et al. MXene- Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mater Sci Eng C. 2019;104:110000.
    [160] He Y, Zhou X, Zhou L, et al. Self-Reducing Prussian Blue on Ti3C2Tx MXene Nanosheets as a Dual-Functional Nanohybrid for Hydrogen Peroxide and Pesticide Sensing. Ind Eng Chem Res. 2020;59(35):15556–64.
    [161] Li X, Lu Y, Liu Q. Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta. 2021;235:122726.
    [162] Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. Chemosphere. 2022;291:132921.
    [163] Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron. 2018;121:243–9.
    [164] Shahzad F, Iqbal A, Zaidi SA, Hwang S-W, Koo CM. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J Ind Eng Chem. 2019;79:338–44.
    [165] Shankar SS, Shereema RM, Rakhi RB. Electrochemical Determination of Adrenaline Using MXene/Graphite Composite Paste Electrodes. ACS Appl Mater Interfaces. 2018;10(50):43343–51.
    [166] Cheng J, Hu K, Liu Q, Liu Y, Yang H, Kong J. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Anal Bioanal Chem. 2021;413(9):2543–51.
    [167] Liu L, Wei Y, Jiao S, Zhu S, Liu X. A novel label-free strategy for the ultrasensitive miRNA-182 detection based on MoS2/Ti3C2 nanohybrids. Biosens Bioelectron. 2019;137:45–51.
    [168] Rasheed PA, Pandey RP, Jabbar KA, Ponraj J, Mahmoud KA. Sensitive electrochemical detection of l-cysteine based on a highly stable Pd@ Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode. Anal Methods. 2019;11(30):3851–6.
    [169] Zhang R, Liu J, Li Y. MXene with Great Adsorption Ability toward Organic Dye: An Excellent Material for Constructing a Ratiometric Electrochemical Sensing Platform. ACS Sensors. 2019;4(8):2058–64.
    [170] Zhu X, Liu B, Hou H, et al. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim Acta. 2017;248:46–57.
    [171] Xia Y, Ma Y, Wu Y, Yi Y, Lin H, Zhu G. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti3C2Tx MXene/carbon black. Microchim Acta. 2021;188(11):377.
    [172] Ni M, Chen J, Wang C, et al. A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem J. 2022;178:107410.
    [173] Laochai T, Yukird J, Promphet N, Qin J, Chailapakul O, Rodthongkum N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/ MXene modified thread electrode. Biosens Bioelectron. 2022;203:114039.
    [174] Zhang Y, Jiang X, Zhang J, Zhang H, Li Y. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron. 2019;130:315–21.
    [175] Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. Nano-Micro Lett. 2022;14(1):100.
    [176] Rasheed PA, Pandey RP, Jabbar KA, Mahmoud KA. Platinum nanoparticles/Ti3C2Tx (MXene) composite for the effectual electrochemical sensing of Bisphenol A in aqueous media. J Electroanal Chem. 2021;880:114934.
    [177] Wang Y, Zeng Z, Qiao J, Dong S, Liang Q, Shao S. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets. Talanta. 2021;221:121605.
    [178] Cao M, Liu S, Liu S, Tong Z, Wang X, Xu X. Preparation of ZnO/ Ti3C2Tx/Nafion/Au electrode. Microchem J. 2022;175:107068.
    [179] Rasheed PA, Pandey RP, Rasool K, Mahmoud KA. Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sensor Actuat B Chem. 2018;265:652–9.
    [180] Zhu X, Lin L, Wu R, et al. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens Bioelectron. 2021;179:113062.
    [181] Huang R, Chen S, Yu J, Jiang X. Self-assembled Ti3C2/MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotox Environ Safe. 2019;184:109619.
    [182] He Y, Ma L, Zhou L, Liu G, Jiang Y, Gao J. Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection. Nanomaterials. 2020;10(5):866.
    [183] Chia HL, Mayorga-Martinez CC, Antonatos N, et al. MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Anal Chem. 2020;92(3):2452–9.
    [184] Lorencova L, Bertok T, Filip J, et al. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensor Actuat B Chem. 2018;263:360–8.
    [185] Nagarajan RD, Sundaramurthy A, Sundramoorthy AK. Synthesis and characterization of MXene (Ti3C2Tx)/Iron oxide composite for ultrasensitive electrochemical detection of hydrogen peroxide. Chemosphere. 2022;286:131478.
    [186] Feng X, Han G, Cai J, Wang X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J Coll Int Sci. 2022;607:1313–22.
    [187] Murugan P, Annamalai J, Atchudan R, et al. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. Micromachines. 2022;13(2):304.
    [188] Huang H, Xie S, Deng L, Yuan J, Yue R, Xu J. Fabrication of rGO/MXene-Pd/rGO hierarchical framework as high-performance electrochemical sensing platform for luteolin detection. Microchim Acta. 2022;189(2):59.
    [189] Chen Y, Li S, Zhang L, et al. Facile and fast synthesis of three-dimensional Ce-MOF/ Ti3C2Tx MXene composite for high performance electrochemical sensing of L-Tryptophan. J Solid State Chem. 2022;308:122919.
    [190] Liao D, Liu Z, Huang R, Yu J, Jiang X. In-situ construction of porous carbon on embedded N-doped MXene nanosheets composite for simultaneous determination of 4-aminophenol and Acetaminophen. Microchem J. 2022;175:107067.
    [191] Xia Y, Hu X, Liu Y, Zhao F, Zeng B. Molecularly imprinted ratiometric electrochemical sensor based on carbon nanotubes/cuprous oxide nanoparticles/titanium carbide MXene composite for diethylstilbestrol detection. Microchim Acta. 2022;189(4):137.
    [192] Kumar J, Soomro RA, Neiber RR, et al. Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid. Biosensors. 2022;12(4):231.
    [193] Wang X, Li M, Yang S, Bai X, Shan J. Self-assembled Ti3C2Tx MXene/graphene composite for the electrochemical reduction and detection of p-nitrophenol. Microchem J. 2022;179:107473.
    [194] Soomro RA, Jawaid S, Zhang P, et al. NiWO4-induced partial oxidation of MXene for photo-electrochemical detection of prostate-specific antigen. Sensor Actuat B Chem. 2021;328:129074.
    [195] Zhang H, Wang Z, Zhang Q, Wang F, Liu Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron. 2019;124–125:184–90.
    [196] Ma X, Tu X, Gao F, et al. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sensor Actuat B Chem. 2020;309:127815.
    [197] Huang R, Liao D, Chen S, Yu J, Jiang X. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sensor Actuat B Chem. 2020;320:128386.
    [198] Tu X, Gao F, Ma X, et al. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J Hazard Mater. 2020;396:122776.
    [199] Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta. 2021;224:121879.
    [200] Duan F, Guo C, Hu M, et al. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sensor Actuat B Chem. 2020;310:127844.
    [201] Seyedin S, Uzun S, Levitt A, et al. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Adv Funct Mater. 2020;30(12):1910504.
    [202] Luo J, Gao S, Luo H, et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J. 2021;406:126898.
    [203] Zhao X, Wang L-Y, Tang C-Y, et al. Smart Ti3C2Tx MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. ACS Nano. 2020;14(7):8793–805.
    [204] Cao Z, Yang Y, Zheng Y, et al. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J Mater Chem A. 2019;7(44):25314–23.
    [205] Wang B, Lai X, Li H, Jiang C, Gao J, Zeng X. Multifunctional MXene/Chitosan-Coated Cotton Fabric for Intelligent Fire Protection. ACS Appl Mater Interfaces. 2021;13(19):23020–9.
    [206] Wang L, Tian M, Zhang Y, et al. Helical core-sheath elastic yarn-based dual strain/humidity sensors with MXene sensing layer. J Mater Sci. 2020;55(14):6187–94.
    [207] An H, Habib T, Shah S, et al. Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Appl Nano Mater. 2019;2(2):948–55.
    [208] Wu J, Lu P, Dai J, et al. High performance humidity sensing property of Ti3C2Tx MXene-derived Ti3C2Tx/K2Ti4O9 composites. Sensor Actuat B Chem. 2021;326:128969.
    [209] Li N, Jiang Y, Zhou C, et al. High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti3C2 MXene-Derived TiO2 Nanowires. ACS Appl Mater Interfaces. 2019;11(41):38116–25.
    [210] Li H, Chen J, Chang X, et al. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. J Mater Chem A. 2021;9(3):1795–802.
    [211] Schwartz G, Tee BCK, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun. 2013;4(1):1859.
    [212] Wang H, Zhou R, Li D, et al. High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti3C2Tx MXene for the Monitoring of Human Activities. ACS Nano. 2021;15(6):9690–700.
    [213] Wang X, Liu X, Schubert DW. Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks. Nano-Micro Lett. 2021;13(1):64.
    [214] Bu Y, Shen T, Yang W, et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci Bull. 2021;66(18):1849–57.
    [215] Yang Y, Shi L, Cao Z, Wang R, Sun J. Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti3C2Tx (MXene) Nanoparticle-Nanosheet Hybrid Network. Adv Funct Mater. 2019;29(14):1807882.
    [216] Zeng Y, Wu W. Synthesis of 2D Ti3C2Tx MXene and MXene-based composites for flexible strain and pressure sensors. Nanoscale Horiz. 2021;6(11):893–906.
    [217] Zheng Y, Yin R, Zhao Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J. 2021;420:127720.
    [218] Yan J, Ma Y, Jia G, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem Eng J. 2022;431:133458.
    [219] Shi X, Fan X, Zhu Y, et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun. 2022;13(1):1119.
    [220] Zhang Y-Z, Lee Kang H, Anjum Dalaver H, et al. MXenes stretch hydrogel sensor performance to new limits. Sci Adv. 2018;4(6):eaat0098.
    [221] Wang S, Du X, Luo Y, et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics. Chem Eng J. 2021;408:127363.
    [222] Ho DH, Choi YY, Jo SB, Myoung J-M, Cho JH. Sensing with MXenes: Progress and Prospects. Adv Mater. 2021;33(47):2005846.
    [223] Vijayababu M, Chintagumpala K. Review of MXene-based Resistance Pressure Sensors for Vital Signs Monitor. J Electron Mater. 2022;51(4):1443–72.
    [224] Wang Y, Yue Y, Cheng F, et al. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano. 2022;16(2):1734–58.
    [225] Wang Z, Zhou H, Liu D, et al. A Structural Gel Composite Enabled Robust Underwater Mechanosensing Strategy with High Sensitivity. Adv Funct Mater. 2022;32(25):2201396.
    [226] Su T, Liu N, Lei D, et al. Flexible MXene/Bacterial Cellulose Film Sound Detector Based on Piezoresistive Sensing Mechanism. ACS Nano. 2022;16(5):8461–71.
    [227] Gou G-Y, Li X-S, Jian J-M, et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci Adv. 2022;8(13):eabn2156.
    [228] Xu B, Ye F, Chen R, Luo X, Chang G, Li R. A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram Int. 2022;48(7):10220–6.
    [229] Zhang Z, Weng L, Guo K, Guan L, Wang X, Wu Z. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceram Int. 2022;48(4):4977–85.
    [230] Chen B, Zhang L, Li H, Lai X, Zeng X. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J Colloid Interf Sci. 2022;617:478–88.
    [231] Lu W, Mustafa B, Wang Z, Lian F, Yu G. PDMS-Encapsulated MXene@Polyester Fabric Strain Sensor for Multifunctional Sensing Applications. Nanomaterials. 2022;12(5):871.
    [232] Wang S, Li D, Jiang L, Fang D. Flexible and mechanically strong MXene/FeCo@C decorated carbon cloth: A multifunctional electromagnetic interference shielding material. Compos Sci Technol. 2022;221:109337.
    [233] Fu X, Li J, Li D, et al. MXene/ZIF-67/PAN Nanofiber Film for Ultra-sensitive Pressure Sensors. ACS Appl Mater Interfaces. 2022;14(10):12367–74.
    [234] Cao Y, Guo Y, Chen Z, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy. 2022;92:106689.
    [235] Luan H, Zhang D, Xu Z, Zhao W, Yang C, Chen X. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. J Mater Chem C. 2022;10(19):7604–13.
    [236] Li H, Cao J, Chen J, Li Y, Liu J, Du Z. MXene-containing pressure sensor based on nanofiber film and spacer fabric with ultrahigh sensitivity and Joule heating effect. Text Res J. 2022;92(11–12):1999–2009.
    [237] Wang H, Xiang J, Wen X, et al. Multifunctional skin-inspired resilient MXene-embedded nanocomposite hydrogels for wireless wearable electronics. Compos Part A Appl S. 2022;155:106835.
    [238] Chen Q, Gao Q, Wang X, Schubert DW, Liu X. Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine /MXene foam for piezoresistive sensors and motion monitoring. Compos Part A Appl S. 2022;155:106838.
    [239] Wu L, Xu C, Fan M, et al. Lotus root structure-inspired Ti3C2-MXene-Based flexible and wearable strain sensor with ultra-high sensitivity and wide sensing range. Compos Part A Appl S. 2022;152:106702.
    [240] Wang J, Dai T, Zhou Y, Mohamed A, Yuan G, Jia H. Adhesive and high-sensitivity modified Ti3C2Tx (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J Colloid Interf Sci. 2022;613:94–102.
    [241] Qin R, Li X, Hu M, Shan G, Seeram R, Yin M. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sensor Actuat A Phys. 2022;338:113458.
    [242] Chen Y, Jiang Y, Feng W, Wang W, Yu D. Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network. Colloid Surface A. 2022;635:128055.
    [243] Xu H, Jiang X, Yang K, et al. Conductive and eco-friendly gluten/MXene composite organohydrogels for flexible, adhesive, and low-temperature tolerant epidermal strain sensors. Colloid Surface A. 2022;636:128182.
    [244] Chen K, Hu Y, Wang F, et al. Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloid Surface A. 2022;645:128897.
    [245] Qin M, Yuan W, Zhang X, et al. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloid Surface B. 2022;214:112482.
    [246] Zhang D, Yin R, Zheng Y, et al. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem Eng J. 2022;438:135587.
    [247] Ganguly S, Das P, Saha A, Noked M, Gedanken A, Margel S. Mussel-Inspired Polynorepinephrine/MXene-Based Magnetic Nanohybrid for Electromagnetic Interference Shielding in X-Band and Strain-Sensing Performance. Langmuir. 2022;38(12):3936–50.
    [248] Adepu V, Kunchur A, Tathacharya M, Mattela V, Sahatiya P. SnS/ Ti3C2Tx (MXene) Nanohybrid-Based Wearable Electromechanical Sensors for Sign-to-Text Translation and Sitting Posture Analysis. ACS Appl Electron Mater. 2022;4(4):1756–68.
    [249] Yang G, Yang Y, Chen T, Wang J, Ma L, Yang S. Graphene/MXene Composite Aerogels Reinforced by Polyimide for Pressure Sensing. ACS Appl Nano Mater. 2022;5(1):1068–77.
    [250] Wen L, Nie M, Wang C, Zhao Y-N, Yin K, Sun L. Multifunctional, Light-Weight Wearable Sensor Based on 3D Porous Polyurethane Sponge Coated with MXene and Carbon Nanotubes Composites. Adv Mater Interfaces. 2022;9(5):2101592.
    [251] Adepu V, Kamath K, Siddhartha S, Mattela V, Sahatiya P. MXene/TMD Nanohybrid for the Development of Smart Electronic Textiles Based on Physical Electromechanical Sensors. Adv Mater Interfaces. 2022;9(4):2101687.
    [252] Zhao T, Liu H, Yuan L, et al. A Multi-Responsive MXene-Based Actuator with Integrated Sensing Function. Adv Mater Interfaces. 2022;9(10):2101948.
    [253] Bai Y, Qin F, Lu Y. Flexible and Lightweight Ni/MXene Decorated Polyurethane Sponge Composite with Sensitive Strain Sensing Performance for Ultrahigh Terahertz Absorption. Adv Opt Mater. 2022;10(4):2101868.
    [254] Mohseni Taromsari S, Shi HH, Saadatnia Z, Park CB, Naguib HE. Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors. Chem Eng J. 2022;442:136138.
    [255] Wang Z, Zhang K, Liu Y, Zhao H, Gao C, Wu Y. Modified MXene-doped conductive organosilicon elastomer with high-stretchable, toughness, and self-healable for strain sensors. Compos Struct. 2022;282:115071.
    [256] Zeng Z, Yu S, Guo C, Lu D, Geng Z, Pei D. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors. Macromol Rapid Comm. 2022;43(15):2200103.
    [257] Zhang L, Zhang X, Zhang H, et al. Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem Eng J. 2022;434:134751.
    [258] Lv Y, Min L, Niu F, et al. Wrinkle-structured MXene film assists flexible pressure sensors with superhigh sensitivity and ultrawide detection range. Nanocomposites. 2022;8(1):81–94.
    [259] Adepu V, Mattela V, Sahatiya P. A remarkably ultra-sensitive large area matrix of MXene based multifunctional physical sensors (pressure, strain, and temperature) for mimicking human skin. J Mater Chem B. 2021;9(22):4523–34.
    [260] Duan S, Lin Y, Wang Z, et al. Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research. 2021;2021:9861467.
    [261] Sun J, Du H, Chen Z, Wang L, Shen G. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022;15(4):3653–9.
    [262] Xu X, Chen Y, He P, et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021;14(8):2875–83.
    [263] Zheng X, Hu Q, Wang Z, Nie W, Wang P, Li C. Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. J Colloid Interf Sci. 2021;602:680–8.
    [264] Wang Q, Liu J, Tian G, Zhang D. Co@N-CNT/MXenes in situ grown on carbon nanotube film for multifunctional sensors and flexible supercapacitors. Nanoscale. 2021;13(34):14460–8.
    [265] Cai Y-W, Zhang X-N, Wang G-G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy. 2021;81:105663.
    [266] Fan Z, Zhang L, Tan Q, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements. Smart Mater Struct. 2021;30(3):035024.
    [267] Chen W, Liu L-X, Zhang H-B, Yu Z-Z. Kirigami-Inspired Highly Stretchable, Conductive, and Hierarchical Ti3C2Tx MXene Films for Efficient Electromagnetic Interference Shielding and Pressure Sensing. ACS Nano. 2021;15(4):7668–81.
    [268] Wang Z-x, Han X-s, Zhou Z-j, et al. Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos Sci Technol. 2021;213:108931.
    [269] Yang Z, Li H, Zhang S, Lai X, Zeng X. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem Eng J. 2021;425:130462.
    [270] Lin C, Luo S, Meng F, et al. MXene/air-laid paper composite sensors for both tensile and torsional deformations detection. Compos Commun. 2021;25:100768.
    [271] Fan C, Wang D, Huang J, Ke H, Wei Q. A highly sensitive epidermal sensor based on triple-bonded hydrogels for strain/pressure sensing. Compos Commun. 2021;28:100951.
    [272] Zhang L, Zhang S, Wang C, Zhou Q, Zhang H, Pan G-B. Highly Sensitive Capacitive Flexible Pressure Sensor Based on a High-Permittivity MXene Nanocomposite and 3D Network Electrode for Wearable Electronics. ACS Sensors. 2021;6(7):2630–41.
    [273] Bandar Abadi M, Weissing R, Wilhelm M, et al. Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Appl Mater Interfaces. 2021;13(29):34996–5007.
    [274] Wang T, Wang J, Li Z, et al. PVA/SA/MXene dual-network conductive hydrogel for wearable sensor to monitor human motions. J Appl Polym Sci. 2022;139(7):51627.
    [275] Liu L, Wang L, Liu X, et al. High-Performance Wearable Strain Sensor Based on MXene@Cotton Fabric with Network Structure. Nanomaterials. 2021;11(4):889.
    [276] Yuan W, Qu X, Lu Y, et al. MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chinese Chem Lett. 2021;32(6):2021–6.
    [277] Jia Z, Li Z, Ma S, et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J Colloid Interf Sci. 2021;584:1–10.
    [278] Fu X, Li L, Chen S, et al. Knitted Ti3C2Tx MXene based fiber strain sensor for human–computer interaction. J Colloid Interf Sci. 2021;604:643–9.
    [279] Li X, Yang J, Yuan W, et al. Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Compos Commun. 2021;23:100586.
    [280] Cheng W, Zhang Y, Tian W, et al. Highly Efficient MXene-Coated Flame Retardant Cotton Fabric for Electromagnetic Interference Shielding. Ind Eng Chem Res. 2020;59(31):14025–36.
    [281] Guo L, Zhang Z, Li M, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying. Compos Commun. 2020;19:134–41.
    [282] Liu X, Jin X, Li L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J Mater Chem A. 2020;8(25):12526–37.
    [283] Jia G, Zheng A, Wang X, et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sensor Actuat B Chem. 2021;346:130507.
    [284] Xing H, Li X, Lu Y, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sensor Actuat B Chem. 2022;361:131704.
    [285] Gao Y, Yan C, Huang H, et al. Microchannel-Confined MXene Based Flexible Piezoresistive Multifunctional Micro-Force Sensor. Adv Funct Mater. 2020;30(11):1909603.
    [286] Wang L, Zhang M, Yang B, Tan J. Lightweight, Robust, Conductive Composite Fibers Based on MXene@Aramid Nanofibers as Sensors for Smart Fabrics. ACS Appl Mater Interfaces. 2021;13(35):41933–45.
    [287] Chen Y, Deng Z, Ouyang R, et al. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy. 2021;84:105866.
    [288] Li K, Li Z, Xiong Z, et al. Thermal Camouflaging MXene Robotic Skin with Bio-Inspired Stimulus Sensation and Wireless Communication. Adv Funct Mater. 2022;32(23):2110534.
    [289] Clement RGE, Bugler KE, Oliver CW. Bionic prosthetic hands: A review of present technology and future aspirations. The Surgeon. 2011;9(6):336–40.
    [290] Jin G, Sun Y, Geng J, et al. Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano Energy. 2021;84:105896.
    [291] Sitti M. Miniature soft robots-road to the clinic. Nat Rev Mater. 2018;3(6):74–5.
    [292] Wang J, Gao D, Lee PS. Recent Progress in Artificial Muscles for Interactive Soft Robotics. Adv Mater. 2021;33(19):2003088.
    [293] Chen D, Liu Q, Han Z, et al. 4D Printing Strain Self-Sensing and Temperature Self-Sensing Integrated Sensor-Actuator with Bioinspired Gradient Gaps. Adv Sci. 2020;7(13):2000584.
    [294] Kim H, Lee H, Ha I, et al. Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics. Adv Funct Mater. 2018;28(32):1801847.
    [295] Liu Y-Q, Chen Z-D, Han D-D, et al. Bioinspired Soft Robots Based on the Moisture-Responsive Graphene Oxide. Adv Sci. 2021;8(10):2002464.
    [296] Wang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun. 2021;12(1):1291.
    [297] Jing L, Li K, Yang H, Chen P-Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater Horiz. 2020;7(1):54–70.
    [298] Li Y, Yang H, Zhang T, et al. Stretchable Zn-Ion Hybrid Battery with Reconfigurable V2CTx and Ti3C2Tx MXene Electrodes as a Magnetically Actuated Soft Robot. Adv Energy Mater. 2021;11(45):2101862.
    [299] Tang Z-H, Zhu W-B, Mao Y-Q, et al. Multiresponsive Ti3C2Tx MXene-Based Actuators Enabled by Dual-Mechanism Synergism for Soft Robotics. ACS Appl Mater Interfaces. 2022;14(18):21474–85.
    [300] Xiao X, Ma H, Zhang X. Flexible Photodriven Actuator Based on Gradient–Paraffin-Wax-Filled Ti3C2Tx MXene Film for Bionic Robots. ACS Nano. 2021;15(8):12826–35.
    [301] Luo X-J, Li L, Zhang H-B, et al. Multifunctional Ti3C2Tx MXene/Low-Density Polyethylene Soft Robots with Programmable Configuration for Amphibious Motions. ACS Appl Mater Interfaces. 2021;13(38):45833–42.
    [302] Duan S, Lin Y, Zhang C, et al. Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities. Nano Energy. 2022;91:106650.
    [303] Wang K, Jia Y, Yan X. A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy. 2022;100:107486.
    [304] Persson I, Näslund L-Å, Halim J, et al. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 2018;5(1):015002.
    [305] Xie Y, Naguib M, Mochalin VN, et al. Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides. J Am Chem Soc. 2014;136(17):6385–94.
    [306] Tao K, Chen Z, Yu J, et al. Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces. Adv Sci. 2022;9(10):2104168.
    [307] Cui Y, Zhang Y, Cao Z, et al. A perspective on high-entropy two-dimensional materials. SusMat. 2022;2(1):65–75.
    [308] Ma W, Wang M, Yi Q, et al. A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy. 2022;96:107129.
    [309] Pinto D, Anasori B, Avireddy H, et al. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides-solid solution MXenes. J Mater Chem A. 2020;8(18):8957–68.
  • 加载中
图(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 录用日期:  2023-04-21
  • 修回日期:  2023-03-11
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回