留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Shang-Yu Ren, Wei-Qiang Wang, Yu-Jie Cheng, Long Huang, Bing-Zheng Du, Wei Zhao, Guang-Can Guo, Lan-Tian Feng, Wen-Fu Zhang, Xi-Feng Ren. Photonic-chip-based dense entanglement distribution[J]. PhotoniX. doi: 10.1186/s43074-023-00089-1
引用本文: Shang-Yu Ren, Wei-Qiang Wang, Yu-Jie Cheng, Long Huang, Bing-Zheng Du, Wei Zhao, Guang-Can Guo, Lan-Tian Feng, Wen-Fu Zhang, Xi-Feng Ren. Photonic-chip-based dense entanglement distribution[J]. PhotoniX. doi: 10.1186/s43074-023-00089-1
Shang-Yu Ren, Wei-Qiang Wang, Yu-Jie Cheng, Long Huang, Bing-Zheng Du, Wei Zhao, Guang-Can Guo, Lan-Tian Feng, Wen-Fu Zhang, Xi-Feng Ren. Photonic-chip-based dense entanglement distribution[J]. PhotoniX. doi: 10.1186/s43074-023-00089-1
Citation: Shang-Yu Ren, Wei-Qiang Wang, Yu-Jie Cheng, Long Huang, Bing-Zheng Du, Wei Zhao, Guang-Can Guo, Lan-Tian Feng, Wen-Fu Zhang, Xi-Feng Ren. Photonic-chip-based dense entanglement distribution[J]. PhotoniX. doi: 10.1186/s43074-023-00089-1

Photonic-chip-based dense entanglement distribution

doi: 10.1186/s43074-023-00089-1

Photonic-chip-based dense entanglement distribution

Funds: This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 62061160487, 12004373, 62075238), the Innovation Program for Quantum Science and Technology (No. 2021ZD0303200), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB24030601), the CAS Project for Young Scientists in Basic Research (No. YSBR-049), the Postdoctoral Science Foundation of China (No. 2020 M671860) and the Fundamental Research Funds for the Central Universities.
  • [1] Joshi SK, et al. A trusted node-free eight-user metropolitan quantum communication network. Sci Adv. 2020;6:eaba0959.
    [2] Fröhlich B, et al. A quantum access network. Nature. 2013;501:69–72.
    [3] Jayakumar H, et al. Time-bin entangled photons from a quantum dot. Nat Commun. 2014;5:4251.
    [4] Cuevas A, et al. Long-distance distribution of genuine energy-time entanglement. Nat Commun. 2013;4:2871.
    [5] Zhang M, et al. Electronically programmable photonic molecule. Nat Photonics. 2019;13:36–40.
    [6] Wang J, Sciarrino F, Laing A, Thompson MG. Integrated photonic quantum technologies. Nat Photonics. 2020;14:273–84.
    [7] Feng L, et al. Silicon photonic devices for scalable quantum information applications. Photonics Res. 2022;10:A135–53.
    [8] Feng L, et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat Commun. 2016;7:11985.
    [9] Ren S, et al. Single-photon nonreciprocity with an integrated magneto-optical isolator. Laser Photonics Rev. 2022;16:2100595.
    [10] Pelucchi E, et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys. 2022;4:194–208.
    [11] Harris NC, et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys Rev X. 2014;4:41047.
    [12] Wang J, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science. 2018;360:285–91.
    [13] Metcalf BJ, et al. Quantum teleportation on a photonic chip. Nat Photonics. 2014;8:770–4.
    [14] Broome MA, et al. Photonic boson sampling in a tunable circuit. Science. 2013;339:794–8.
    [15] Paesani S, et al. Generation and sampling of quantum states of light in a silicon chip. Nat Phys. 2019;15:925–9.
    [16] Politi A, Matthews JCF, O'Brien JL. Shor's quantum factoring algorithm on a photonic chip. Science. 2009;325:1221.
    [17] Santagati R, et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci Adv. 2018;4:p9646.
    [18] Zhang Z, et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf. 2021;7:123.
    [19] Xu B, et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci China Phys Mech. 2022;65:294262.
    [20] Feng L, Guo G, Ren X. Progress on integrated quantum photonic sources with silicon. Adv Quantum Technol. 2020;3:1900058.
    [21] Li Y, et al. On-chip multiplexed multiple entanglement sources in a single silicon nanowire. Phys Rev Appl. 2017;7:64005.
    [22] Wengerowsky S, et al. An entanglement-based wavelength-multiplexed quantum communication network. Nature. 2018;564:225.
    [23] Williams BP, et al. Reconfigurable quantum local area network over deployed fiber. PRX Quantum. 2021;2:40304.
    [24] Aktas D, et al. Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser Photonics Rev. 2016;10:451–7.
    [25] Dong S, et al. Energy-time entanglement generation in optical fibers under CW pumping. Opt Express. 2014;22:359–68.
    [26] Liu X, et al. 40-user fully connected entanglement-based quantum key distribution network without trusted node. PhotoniX. 2022;3:2.
    [27] Xiong C, et al. Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica. 2015;2:724.
    [28] Zhang X, et al. Integrated silicon nitride time-bin entanglement circuits. Opt Lett. 2018;43:3469–72.
    [29] Pathak S, Dumon P, Van Thourhout D, Bogaerts W. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J. 2014;6:1–9.
    [30] Sugita A, et al. Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides. IEEE Photonic Tech L. 2000;12:1180–2.
    [31] Nishi H, et al. Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver. Opt Express. 2012;20:9312–21.
    [32] Wang J, et al. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt Express. 2014;22:9395–403.
    [33] Bogaerts W, et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt Express. 2007;15:1567–78.
    [34] Bogaerts W, et al. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J Sel Top Quant. 2010;16:33–44.
    [35] Piels M. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J Lightwave Technol. 2014;32:817–23.
    [36] Li J, et al. AWG optical filter with tunable central wavelength and bandwidth based on LNOI and electro-optic effect. Opt Commun. 2020;454:124445.
    [37] Xu Y, Lin H. A concise design of 16×16 polymer AWG with low insertion loss and crosstalk. Optik. 2014;125:920–3.
    [38] Zhang M, et al. Generation of multiphoton quantum states on silicon. Light Sci Appl. 2019;8:41.
    [39] Franson JD. Bell inequality for position and time. Phys Rev Lett. 1989;62:2205.
    [40] Brendel J, Gisin N, Tittel W, Zbinden H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys Rev Lett. 2001;86:1392.
  • 加载中
图(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 录用日期:  2023-02-28
  • 修回日期:  2023-02-10
  • 网络出版日期:  2023-03-09

目录

    /

    返回文章
    返回