留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation

Lihong Hong Chenyang Hu Yuanyuan Liu Huijun He Liqiang Liu Zhiyi Wei Zhi-Yuan Li

Lihong Hong, Chenyang Hu, Yuanyuan Liu, Huijun He, Liqiang Liu, Zhiyi Wei, Zhi-Yuan Li. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX. doi: 10.1186/s43074-023-00088-2
引用本文: Lihong Hong, Chenyang Hu, Yuanyuan Liu, Huijun He, Liqiang Liu, Zhiyi Wei, Zhi-Yuan Li. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX. doi: 10.1186/s43074-023-00088-2
Lihong Hong, Chenyang Hu, Yuanyuan Liu, Huijun He, Liqiang Liu, Zhiyi Wei, Zhi-Yuan Li. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX. doi: 10.1186/s43074-023-00088-2
Citation: Lihong Hong, Chenyang Hu, Yuanyuan Liu, Huijun He, Liqiang Liu, Zhiyi Wei, Zhi-Yuan Li. 350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation[J]. PhotoniX. doi: 10.1186/s43074-023-00088-2

350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation

doi: 10.1186/s43074-023-00088-2

350-2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation

Funds: The authors are grateful for the financial support from the National Natural Science Foundation of China (11974119), Science and Technology Project of Guangdong (2020B010190001), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06C594), and National Key R&D Program of China (2018YFA 0306200).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Dudley JM, Taylor JR. Supercontinuum generation in optical fibers. New York: Cambridge University Press; 2010.
    [2] Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C. Multi-photon excitation microscopy. Biomed Eng Online. 2006;5:1–14.
    [3] Udem T, Holzwarth R, Hansch TW. Optical frequency metrology. Nature. 2002;416:233–7.
    [4] Mollenauer LF, Stolen RH, Gordon JP, Tomlinson WJ. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt Lett. 1983;8:289–91.
    [5] Froehly L, Meteau J. Supercontinuum sources in optical coherence tomography: a state of the art and the application to scan-free time domain correlation techniques and depth dependant dispersion compensation. Opt Fiber Technol. 2012;18:411–9.
    [6] Ji XC, Mojahed D, Okawachi Y, Gaeta AL, Hendon CP, Lipson M. Millimeter-scale chip-based supercontinuum generation for optical coherence tomography. Sci Adv. 2021;7:eabg8869.
    [7] Russell P. Photonic crystal fibers. Science. 2003;299:358–62.
    [8] Jiang X, Joly NY, Finger MA, Babic F, Wong GKL, Travers JC, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber. Nat Photonics. 2015;9:133–9.
    [9] He P, Liu YY, Zhao K, Teng H, He XK, Huang P, et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level. Opt Lett. 2017;42:474–7.
    [10] Su YB, Fang SB, Gao YT, Zhao K, Chang GQ, Wei ZY. Efficient generation of UV-enhanced intense supercontinuum in solids: toward sub-cycle transient. Appl Phys Lett. 2021;118:261102.
    [11] Hassan MT, Luu TT, Moulet A, Raskazovskaya Q, Zhokhov P, Garg M, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature. 2016;530:66–70.
    [12] Mucke OD, Fang SB, Cirmi G, Rossi GM, Chia SH, Ye H, et al. Toward waveform nonlinear optics using multimillijoule sub-cycle waveform synthesizers. IEEE J Sel Top Quantum Electron. 2015;21:8700712.
    [13] Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127:1918–39.
    [14] Zhu SN, Zhu YY, Qin YQ, Wang HF, Ge CZ, Ming NB. Experimental realization of second harmonic generation in a Fibonacci optical Superlattice of LiTaO3. Phys Rev Lett. 1997;78:2752–5.
    [15] Chen BQ, Zhang C, Liu RJ, Li ZY. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Appl Phys Lett. 2014;105:151106.
    [16] Zhu SN, Zhu YY, Ming NB. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical super-lattice. Science. 1997;278:843–6.
    [17] Chen BQ, Ren ML, Liu RJ, Zhang C, Sheng Y, Ma BQ, et al. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light Sci Appl. 2014;3:e189.
    [18] Chen BQ, Zhang C, Hu CY, Liu RJ, Li ZY. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys Rev Lett. 2015;115:083902.
    [19] Chen BQ, Hong LH, Hu CY, Li ZY. White laser realized via synergic second- and third-order nonlinearities. Research. 2021;2021:1–13.
    [20] Li MZ, Hong LH, Li ZY. Intense two-octave ultraviolet-visible-infrared supercontinuum laser via high-efficiency one-octave second-harmonic generation. Research. 2022;2022:1–9.
    [21] Ren ML, Li ZY. An effective susceptibility model for exact solution of second harmonic generation in general quasi–phase-matched structures. EPL. 2011;94:44003.
    [22] Hu CY, Li ZY. An effective nonlinear susceptibility model for general three-wave mixing in quasi-phase-matching structure. J Appl Phys. 2017;121:123110.
    [23] He HJ, Wang ZH, Hu CY, Jiang JW, Qin S, He P, et al. 520-μJ mid-infrared femtosecond laser at 2.8 μm by 1-kHz KTA optical parametric amplifier. Appl Phys B Lasers Opt. 2018;124:1–5.
    [24] Agrawal GP. Nonlinear fiber optics. Berlin, Heidelberg: Springer; 2013.
    [25] Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys. 2006;78:1135–84.
    [26] New G. Introduction to nonlinear optics. New York: Cambridge University Press; 2011.
    [27] Ranka JK, Windeler RS, Stentz AJ. Optical properties of high-delta air-silica microstructure optical fibers. Opt Lett. 2000;25:796–8.
    [28] Cheng TL, Nagasaka K, Tuan TH, Xue XJ, Matsumoto M, Tezuka H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Opt Lett. 2016;41:2117–20.
    [29] Belli F, Abdolvand A, Chang W, Travers JC, Russell PS. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica. 2015;2:292–300.
    [30] Fang S, Yamane K, Zhu J, Zhou C, Zhang Z, Yamashita M. Generation of sub-900- μJ supercontinuum with a two-octave bandwidth based on induced phase modulation in argon-filled hollow fiber. IEEE Photonic Tech L. 2011;23:688–90.
    [31] Russell PS. Photonic-crystal fibres. J Lightwave Technol. 2006;24:4729–49.
    [32] Lesko DMB, Timmers H, Xing S, Kowligy A, Lind AJ, Diddams SA. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat Photonics. 2021;15:281–6.
    [33] Elu U, Maidment L, Vamos L, Tani F, Novoa D, Frosz MH, et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nat Photonics. 2021;15:277–80.
    [34] Hooper L, Kalita M, Devine A, Orec-Archer A, Cloweset J. White light 50 W supercontinuum: roadmap to kW truly white lasers. Proc SPIE. 2015;9344:143–8.
  • 加载中
图(1)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  0
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 录用日期:  2023-02-28
  • 修回日期:  2023-02-08
  • 网络出版日期:  2023-03-09

目录

    /

    返回文章
    返回