留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Xiaoying Zheng, Jing Lin, Zhuo Wang, Haoyang Zhou, Qiong He, Lei Zhou. Manipulating light transmission and absorption via an achromatic reflectionless metasurface[J]. PhotoniX. doi: 10.1186/s43074-022-00078-w
Citation: Xiaoying Zheng, Jing Lin, Zhuo Wang, Haoyang Zhou, Qiong He, Lei Zhou. Manipulating light transmission and absorption via an achromatic reflectionless metasurface[J]. PhotoniX. doi: 10.1186/s43074-022-00078-w

doi: 10.1186/s43074-022-00078-w

Manipulating light transmission and absorption via an achromatic reflectionless metasurface

Funds: We acknowledge technical supports from Fudan Nanofabrication Laboratory for sample fabrications. We thank Kun Ding, Shulin Sun and Zhenyu Qian for useful discussions and technical support.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–80. https://doi.org/10.1126/science.1133628.
    [2] Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science. 2015;349(6254):1310–4. https://doi.org/10.1126/science.aac9411.
    [3] Jahani Y, Arvelo ER, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat Commun. 2021;12(1):3246. https://doi.org/10.1038/s41467-021-23257-y.
    [4] Park J-H, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat Phys. 2020;16(4):462–8. https://doi.org/10.1038/s41567-020-0796-x.
    [5] Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. https://doi.org/10.1103/PhysRevLett.100.207402.
    [6] Tian J, Luo H, Li Q, Pei X, Du K, Qiu M. Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures. Laser Photonics Rev. 2018;12(9):1800076. https://doi.org/10.1002/lpor.201800076.
    [7] Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7. https://doi.org/10.1126/science.1210713.
    [8] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11(5):426–31. https://doi.org/10.1038/nmat3292.
    [9] Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science. 2012;335(6067):427. https://doi.org/10.1126/science.1214686.
    [10] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica. 2017;4(1):139–52. https://doi.org/10.1364/OPTICA.4.000139.
    [11] Sun S, He Q, Hao J, Xiao S, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics. 2019;11(2):380–479. https://doi.org/10.1364/AOP.11.000380.
    [12] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10(7):2342–8. https://doi.org/10.1021/nl9041033.
    [13] Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett. 2015;115(23):235503. https://doi.org/10.1103/PhysRevLett.115.235503.
    [14] Tian J, Li Q, Belov PA, Sinha RK, Qian W, Qiu M. High-q all-dielectric metasurface: super and suppressed optical absorption. ACS Photonics. 2020;7(6):1436–43. https://doi.org/10.1021/acsphotonics.0c00003.
    [15] Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater. 2020;8(6):1901548. https://doi.org/10.1002/adom.201901548.
    [16] Liang Y, Lin H, Koshelev K, Zhang F, Yang Y, Wu J, et al. Full-stokes polarization perfect absorption with diatomic metasurfaces. Nano Lett. 2021;21(2):1090–5. https://doi.org/10.1021/acs.nanolett.0c04456.
    [17] Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett. 2008;101(4):047401. https://doi.org/10.1103/PhysRevLett.101.047401.
    [18] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nat Mater. 2009;8(9):758–62. https://doi.org/10.1038/nmat2495.
    [19] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun. 2012;3(1):1151. https://doi.org/10.1038/ncomms2153.
    [20] Yang Y, Kravchenko II, Briggs DP, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun. 2014;5(1):5753. https://doi.org/10.1038/ncomms6753.
    [21] Wang C, Jiang X, Zhao G, Zhang M, Hsu CW, Peng B, et al. Electromagnetically induced transparency at a chiral exceptional point. Nat Phys. 2020;16(3):334–40. https://doi.org/10.1038/s41567-019-0746-7.
    [22] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–4. https://doi.org/10.1126/science.aaf6644.
    [23] Zhang F, Pu M, Li X, Gao P, Ma X, Luo J, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater. 2017;27(47):1704295. https://doi.org/10.1002/adfm.201704295.
    [24] Lou Y, Fang Y, Ruan Z. Optical computation of divergence operation for vector fields. Phys Rev Appl. 2020;14(3):034013. https://doi.org/10.1103/PhysRevApplied.14.034013.
    [25] Lee N, Kim R, Kim JY, Ko JB, Park S-HK, Kim SO, et al. Self-assembled nano–lotus pod metasurface for light trapping. ACS Photonics. 2021;8(6):1616–22. https://doi.org/10.1021/acsphotonics.0c01882.
    [26] Kim M, Lee D, Yang Y, Kim Y, Rho J. Reaching the highest efficiency of spin hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat Commun. 2022;13(1):2036. https://doi.org/10.1038/s41467-022-29771-x.
    [27] Meng C, Thrane PCV, Ding F, Bozhevolnyi SI. Full-range birefringence control with piezoelectric mems-based metasurfaces. Nat Commun. 2022;13(1):2071. https://doi.org/10.1038/s41467-022-29798-0.
    [28] Ma Q, Liu C, Xiao Q, Gu Z, Gao X, Li L, et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights. 2022;1(1):R01. https://doi.org/10.3788/pi.2022.r01.
    [29] Chen H-T, Zhou J, O’Hara JF, Chen F, Azad AK, Taylor AJ. Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett. 2010;105(7):073901. https://doi.org/10.1103/PhysRevLett.105.073901.
    [30] Chu H, Zhang H, Zhang Y, Peng R, Wang M, Hao Y, et al. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces. Nat Commun. 2021;12(1):4523. https://doi.org/10.1038/s41467-021-24763-9.
    [31] Lavigne G, Caloz C. Generalized Brewster effect using bianisotropic metasurfaces. Opt Express. 2021;29(7):11361–70. https://doi.org/10.1364/oe.423078.
    [32] Luo J, Chu H, Peng R, Wang M, Li J, Lai Y. Ultra-broadband reflectionless Brewster absorber protected by reciprocity. Light-Sci Appl. 2021;10(1):89. https://doi.org/10.1038/s41377-021-00529-2.
    [33] Chu H, Xiong X, Gao Y-J, Luo J, Jing H, Li C-Y, et al. Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface. Sci Adv. 2021;7(37):eabj0935. https://doi.org/10.1126/sciadv.abj0935.
    [34] Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun. 2016;7(1):10360. https://doi.org/10.1038/ncomms10360.
    [35] Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, et al. A reconfigurable active huygens’ metalens. Adv Mater. 2017;29(17):1606422. https://doi.org/10.1002/adma.201606422.
    [36] Liu M, Choi D-Y. Extreme huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett. 2018;18(12):8062–9. https://doi.org/10.1021/acs.nanolett.8b04774.
    [37] Liu M, Powell DA, Zarate Y, Shadrivov IV. Huygens’ metadevices for parametric waves. Phys Rev X. 2018;8(3):031077. https://doi.org/10.1103/PhysRevX.8.031077.
    [38] Pfeiffer C, Grbic A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett. 2013;110(19):197401. https://doi.org/10.1103/PhysRevLett.110.197401.
    [39] Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM, Grbic A. Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett. 2014;14(5):2491–7. https://doi.org/10.1021/nl5001746.
    [40] Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 2015;9(4):412–8. https://doi.org/10.1002/lpor.201500041.
    [41] Fan K, Suen JY, Liu X, Padilla WJ. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica. 2017;4(6):601. https://doi.org/10.1364/OPTICA.4.000601.
    [42] Asadchy VS, Faniayeu IA, Ra’di Y, Khakhomov SA, Semchenko IV, Tretyakov SA. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys Rev X. 2015;5(3):031005. https://doi.org/10.1103/PhysRevX.5.031005.
    [43] Zhou H, Zhen B, Hsu CW, Miller OD, Johnson SG, Joannopoulos JD, et al. Perfect single-sided radiation and absorption without mirrors. Optica. 2016;3(10):1079. https://doi.org/10.1364/OPTICA.3.001079.
    [44] Londoño M, Sayanskiy A, Araque-Quijano JL, Glybovski SB, Baena JD. Broadband huygens’ metasurface based on hybrid resonances. Phys Rev Appl. 2018;10(3):034026. https://doi.org/10.1103/PhysRevApplied.10.034026.
    [45] Feng T, Potapov AA, Liang Z, Xu Y. Huygens metasurfaces based on congener dipole excitations. Phys Rev Appl. 2020;13(2):021002. https://doi.org/10.1103/PhysRevApplied.13.021002.
    [46] Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science. 2003;302(5644):419–22. https://doi.org/10.1126/science.1089171.
    [47] Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, et al. Self-assembled plasmonic nanoparticle clusters. Science. 2010;328(5982):1135–8. https://doi.org/10.1126/science.1187949.
    [48] Zhang S, Ye Z, Wang Y, Park Y, Bartal G, Mrejen M, et al. Anti-hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale. Phys Rev Lett. 2012;109(19):193902. https://doi.org/10.1103/PhysRevLett.109.193902.
    [49] Lin J, Qiu M, Zhang X, Guo H, Cai Q, Xiao S, et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles. Light-Sci Appl. 2020;9(1):158. https://doi.org/10.1038/s41377-020-00386-5.
    [50] Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A. 2003;20(3):569–72. https://doi.org/10.1364/JOSAA.20.000569.
    [51] Suh W, Wang Z, Fan S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Electron. 2004;40(10):1511–8. https://doi.org/10.1109/JQE.2004.834773.
    [52] Hsu CW, Zhen B, Lee J, Chua S-L, Johnson SG, Joannopoulos JD, et al. Observation of trapped light within the radiation continuum. Nature. 2013;499(7457):188–91. https://doi.org/10.1038/nature12289.
    [53] We choose to design/characterize our resonator #2 with h set as the optimized value yielding the achromatic reflectionless bi-layer metasurface. While optical response of such a resonator slightly changes as h varies, we neglect such deviations in the discussions followed.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 录用日期:  2022-11-28
  • 修回日期:  2022-11-24
  • 网络出版日期:  2023-01-06

目录

    /

    返回文章
    返回