| [1] | Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–50. https://doi.org/10.1038/nmat3839. | 
		
				| [2] | Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics. 2011;5:523–30. https://doi.org/10.1038/nphoton.2011.154. | 
		
				| [3] | Butt MA, Khonina SN, Kazanskiy NL. Recent advances in photonic crystal optical devices: a review. Opt Laser Technol. 2021;142:107265. https://doi.org/10.1016/j.optlastec.2021.107265. | 
		
				| [4] | Ren H, Fang X, Jang J, Bürger J, Rho J, Maier SA. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol. 2020;15:948–55. https://doi.org/10.1038/s41565-020-0768-4. | 
		
				| [5] | Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics. 2016;10:554–60. https://doi.org/10.1038/nphoton.2016.121. | 
		
				| [6] | Arnoux C, Pérez-Covarrubias LA, Khaldi A, Carlier Q, Baldeck PL, Heggarty K, et al. Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing. Addit Manuf. 2022;49:102491. https://doi.org/10.1016/j.addma.2021.102491. | 
		
				| [7] | Scott TF, Kowalski BA, Sullivan AC, Bowman CN, McLeod RR. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science. 2009;324:913–7. https://doi.org/10.1126/science.1167610. | 
		
				| [8] | Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science. 2009;324:910–3. https://doi.org/10.1126/science.1168996. | 
		
				| [9] | Andrew TL, Tsai HY, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science. 2009;324:917–21. https://doi.org/10.1126/science.1167704. | 
		
				| [10] | Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun. 2013;4:2061. https://doi.org/10.1038/ncomms3061. | 
		
				| [11] | He M, Zhang Z, Cao C, Zhou G, Kuang C, Liu X. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry. Laser Photonics Rev. 2022;16:2100229. https://doi.org/10.1002/lpor.202100229. | 
		
				| [12] | Thiel M, Ott J, Radke A, Kaschke J, Wegener M. Dip-in depletion optical lithography of three-dimensional chiral polarizers. Opt Lett. 2013;38:4252–5. https://doi.org/10.1364/OL.38.004252. | 
		
				| [13] | Fischer J, Mueller JB, Quick AS, Kaschke J, Barner-Kowollik C, Wegener M. Exploring the mechanisms in STED-enhanced direct laser writing. Adv Opt Mater. 2015;3:221–32. https://doi.org/10.1002/adom.201400413. | 
		
				| [14] | Fischer J, Wegener M. Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography. Adv Mater. 2012;24:OP65–9. https://doi.org/10.1002/adma.201103758. | 
		
				| [15] | Wolf TJA, Fischer J, Wegener M, Unterreiner AN. Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography. Opt Lett. 2011;36:3188–90. https://doi.org/10.1364/OL.36.003188. | 
		
				| [16] | Harke B, Dallari W, Grancini G, Fazzi D, Brandi F, Petrozza A, et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv Mater. 2013;25:904–9. https://doi.org/10.1002/adma.201204141. | 
		
				| [17] | Harke B, Bianchini P, Brandi F, Diaspro A. Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography. Chemphyschem. 2012;13:1429–34. https://doi.org/10.1002/cphc.201200006. | 
		
				| [18] | Stocker MP, Li L, Gattass RR, Fourkas JT. Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nat Chem. 2011;3:223–7. https://doi.org/10.1038/nchem.965. | 
		
				| [19] | He X, Li T, Zhang J, Wang Z. STED direct laser writing of 45 nm width nanowire. Micromachines. 2019;10:726. https://doi.org/10.3390/mi10110726. | 
		
				| [20] | Wollhofen R, Katzmann J, Hrelescu C, Jacak J, Klar TA. 120 nm resolution and 55 nm structure size in STED-lithography. Opt Express. 2013;21:10831–40. https://doi.org/10.1364/OE.21.010831. | 
		
				| [21] | Müller P, Müller R, Hammer L, Barner-Kowollik C, Wegener M, Blasco E. STED-inspired laser lithography based on Photoswitchable Spirothiopyran moieties. Chem Mater. 2019;31:1966–72. https://doi.org/10.1021/acs.chemmater.8b04696. | 
		
				| [22] | Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [invited]. Opt Mater Express. 2011;1:614–24. https://doi.org/10.1364/OME.1.000614. | 
		
				| [23] | Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater. 2010;22:3578–82. https://doi.org/10.1002/adma.201000892. | 
		
				| [24] | Wollhofen R, Buchegger B, Eder C, Jacak J, Kreutzer J, Klar TA. Functional photoresists for sub-diffraction stimulated emission depletion lithography. Opt Mater Express. 2017;7:2538–59. https://doi.org/10.1364/OME.7.002538. | 
		
				| [25] | Qiu Y, Tang S, Cai T, Xu H, Ding F. Fundamentals and applications of spin-decoupled Pancharatnam—berry metasurfaces. Front Optoelectron. 2021;14:134–47. https://doi.org/10.1007/s12200-021-1220-6. | 
		
				| [26] | Wang S, Wang X, Kan Q, Ye J, Feng S, Sun W, et al. Spin-selected focusing and imaging based on metasurface lens. Opt Express. 2015;23:26434–41. https://doi.org/10.1364/OE.23.026434. | 
		
				| [27] | Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3:1198. https://doi.org/10.1038/ncomms2207. | 
		
				| [28] | Li Q-T, Dong F, Wang B, Chu W, Gong Q, Brongersma ML, et al. Free-space optical beam tapping with an all-silica metasurface. ACS Photonics. 2017;4:2544–9. https://doi.org/10.1021/acsphotonics.7b00812. | 
		
				| [29] | Guo Y, Zhang S, Pu M, He Q, Jin J, Xu M, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl. 2021;10:63. https://doi.org/10.1038/s41377-021-00497-7. |