| [1] | Coddington I, Swann WC, Nenadovic L, Newbury NR. Rapid and precise absolute distance measurements at long range. Nat Photonics. 2009;3(6):351–6. https://doi.org/10.1038/nphoton.2009.94. | 
		
				| [2] | Lu F, Milios E. Robot pose estimation in unknown environments by matching 2D range scans. J Intell Rob Syst. 1997;18(3):249–75. https://doi.org/10.1023/a:1007957421070. | 
		
				| [3] | Uttam D, Culshaw B. Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J Lightwave Technol. 1985;3(5):971–7. https://doi.org/10.1109/jlt.1985.1074315. | 
		
				| [4] | Trocha P, Kemal JN, Gaimard Q, Aubin G, Lelarge F, Ramdane A, et al. Ultra-fast optical ranging using quantum-dash mode-locked laser diodes. Sci Rep. 2022;12(1):1076. https://doi.org/10.1038/s41598-021-04368-4. | 
		
				| [5] | Mitchell EW, Hoehler MS, Giorgetta FR, Hayden T, Rieker GB, Newbury NR, et al. Coherent laser ranging for precision imaging through flames. Optica. 2018;5(8). https://doi.org/10.1364/optica.5.000988. | 
		
				| [6] | Levinson J, Askeland J, Becker J, Dolson J, Held D, Kammel S, et al. Towards Fully Autonomous Driving: Systems and Algorithms. IEEE Intelligent Vehicles Symposium (IV). 2011. p. 163–8. https://doi.org/10.1109/IVS.2011.5940562. | 
		
				| [7] | Steindorfer MA, Kirchner G, Koidl F, Wang P, Jilete B, Flohrer T. Daylight space debris laser ranging. Nat Commun. 2020;11(1):3735. https://doi.org/10.1038/s41467-020-17332-z. | 
		
				| [8] | Wang Z, Potsaid B, Chen L, Doerr C, Lee HC, Nielson T, et al. Cubic meter volume optical coherence tomography. Optica. 2016;3(12):1496–503. https://doi.org/10.1364/OPTICA.3.001496. | 
		
				| [9] | Ula RK, Noguchi Y, Iiyama K. Three-Dimensional Object Profiling Using Highly Accurate FMCW Optical Ranging System. J Lightwave Technol. 2019;37(15):3826–33. https://doi.org/10.1109/jlt.2019.2921353. | 
		
				| [10] | Lee J, Kim Y-J, Lee K, Lee S, Kim S-W. Time-of-flight measurement with femtosecond light pulses. Nat Photonics. 2010;4(10):716–20. https://doi.org/10.1038/nphoton.2010.175. | 
		
				| [11] | Martin A, Verheyen P, De Heyn P, Absil P, Feneyrou P, Bourderionnet J, et al. Photonic Integrated Circuit-Based FMCW Coherent LiDAR. J Lightwave Technol. 2018;36(19):4640–5. https://doi.org/10.1109/jlt.2018.2840223. | 
		
				| [12] | Dong Y, Zhu Z, Tian X, Qiu L, Ba D. Frequency-Modulated Continuous-Wave LIDAR and 3D Imaging by Using Linear Frequency Modulation Based on Injection Locking. J Lightwave Technol. 2021;39(8):2275–80. https://doi.org/10.1109/jlt.2021.3050772. | 
		
				| [13] | Hauser M, Hofbauer M. FPGA-Based EO-PLL With Repetitive Control for Highly Linear Laser Frequency Tuning in FMCW LIDAR Applications. IEEE Photonics J. 2022;14(1):1–8. https://doi.org/10.1109/jphot.2021.3139053. | 
		
				| [14] | Zhang F-M, Li Y-T, Pan H, Shi C-Z, Qu X-H. Vibration Compensation of the Frequency-Scanning-Interferometry-Based Absolute Ranging System. Applied Sciences. 2019;9(1). https://doi.org/10.3390/app9010147. | 
		
				| [15] | Cheng X, Liu J, Jia L, Zhang F, Qu X. Precision and repeatability improvement in frequency-modulated continuous-wave velocity measurement based on the splitting of beat frequency signals. Opt Express. 2021;29(18):28582–96. https://doi.org/10.1364/OE.433637. | 
		
				| [16] | Li B, Mo D, Wang P, Gan N, Lin M, Wang R, et al. FMCW lidar multitarget detection based on skeleton tree waveform matching. Appl Opt. 2021;60(27):8328–35. https://doi.org/10.1364/AO.431516. | 
		
				| [17] | Pan H, Qu X, Zhang F. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance. Opt Express. 2018;26(12):15186–98. https://doi.org/10.1364/oe.26.015186. | 
		
				| [18] | Baumann E, Giorgetta FR, Deschenes JD, Swann WC, Coddington I, Newbury NR. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt Express. 2014;22(21):24914–28. https://doi.org/10.1364/OE.22.024914. | 
		
				| [19] | Hao Y, Song P, Wang X, Pan Z. A Spectrum Correction Algorithm Based on Beat Signal of FMCW Laser Ranging System. Sensors (Basel). 2021;21(15). https://doi.org/10.3390/s21155057. | 
		
				| [20] | Okano M, Chong C. Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt Express. 2020;28(16):23898–915. https://doi.org/10.1364/OE.396707. | 
		
				| [21] | Norgia M, Melchionni D, Pesatori A. Self-mixing instrument for simultaneous distance and speed measurement. Opt Lasers Eng. 2017;99:31–8. https://doi.org/10.1016/j.optlaseng.2016.10.013. | 
		
				| [22] | Zhang X, Kwon K, Henriksson J, Luo J, Wu MC. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature. 2022;603(7900):253–8. https://doi.org/10.1038/s41586-022-04415-8. | 
		
				| [23] | Norgia M, Magnani A, Pesatori A. High resolution self-mixing laser rangefinder. Rev Sci Instrum. 2012;83(4): 045113. https://doi.org/10.1063/1.3703311. | 
		
				| [24] | Lu C, Xiang Y, Gan Y, Liu B, Chen F, Liu X, et al. FSI-based non-cooperative target absolute distance measurement method using PLL correction for the influence of a nonlinear clock. Opt Lett. 2018;43(9):2098–101. https://doi.org/10.1364/OL.43.002098. | 
		
				| [25] | Mateo AB, Barber ZW. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar. Appl Opt. 2015;54(19):5911–6. https://doi.org/10.1364/AO.54.005911. | 
		
				| [26] | Zhang K, Lv T, Mo D, Wang N, Wang R, Wu Y. Double sideband frequency scanning interferometry for distance measurement in the outdoor environment. Optics Communications. 2018;425:176–9. https://doi.org/10.1016/j.optcom.2018.04.056. | 
		
				| [27] | Ahmad Z, Liao Y-M, Kuo S-I, Chang Y-C, Chao R-L, Naseem, et al. High-Power and High-Responsivity Avalanche Photodiodes for Self-Heterodyne FMCW Lidar System Applications. IEEE Access. 2021;9:85661–71. https://doi.org/10.1109/access.2021.3089082. | 
		
				| [28] | Taimre T, Nikolic M, Bertling K, Lim YL, Bosch T, Rakic AD. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Advances in Optics and Photonics. 2015;7(3):570–631. https://doi.org/10.1364/aop.7.000570. | 
		
				| [29] | Giuliani G, Norgia M, Donati S, Bosch T. Laser diode self-mixing technique for sensing applications. Journal of Optics a-Pure and Applied Optics. 2002;4(6):S283–94. https://doi.org/10.1088/1464-4258/4/6/371. | 
		
				| [30] | Otsuka K. Self-mixing thin-slice solid-state laser Doppler velocimetry with much less than one feedback photon per Doppler cycle. Opt Lett. 2015;40(20):4603–6. https://doi.org/10.1364/ol.40.004603. | 
		
				| [31] | Lacot E, Day R, Stoeckel F. Coherent laser detection by frequency-shifted optical feedback. Physical Review A. 2001;64(4). https://doi.org/10.1103/PhysRevA.64.043815. | 
		
				| [32] | Zhu K, Guo B, Lu Y, Zhang S, Tan Y. Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica. 2017;4(7). https://doi.org/10.1364/optica.4.000729. | 
		
				| [33] | Zhao Y, Zhu D, Chen Y, Tu Y, Bi T, Zhao Y, et al. All-fiber self-mixing laser Doppler velocimetry with much less than 0.1 pW optical feedback based on adjustable gain. Optics Letters. 2020;45(13):3565–8. https://doi.org/10.1364/ol.397819. | 
		
				| [34] | Otsuka K, Ohtomo T, Makino H, Sudo S, Ko JY. Net motion of an ensemble of many Brownian particles captured with a self-mixing laser. Appl Phys Lett. 2009;94(24):3. https://doi.org/10.1063/1.3156826. | 
		
				| [35] | Mowla A, Bertling K, Wilson SJ, Rakic AD. Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium. IEEE Sens J. 2019;19(15):6134–40. https://doi.org/10.1109/jsen.2019.2910122. | 
		
				| [36] | Gouaux F, Servagent N, Bosch T. Absolute distance measurement with an optical feedback interferometer. Appl Opt. 1998;37(28):6684–9. https://doi.org/10.1364/ao.37.006684. | 
		
				| [37] | Lu C, Liu G, Liu B, Chen F, Gan Y. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration. Opt Express. 2016;24(26):30215–24. https://doi.org/10.1364/OE.24.030215. | 
		
				| [38] | Hugon O, Lacot E, Stoeckel F. Submicrometric displacement and vibration measurement using optical feedback in a fiber laser. Fiber Integr Opt. 2003;22(5):283–8. https://doi.org/10.1080/01468030390221696. | 
		
				| [39] | Szwaj C, Lacot E, Hugon O. Large linewidth-enhancement factor in a microchip laser. Physical Review A. 2004;70(3). https://doi.org/10.1103/PhysRevA.70.033809. | 
		
				| [40] | Xu Z, Li J, Zhang S, Tan Y, Zhang X, Lin X, et al. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity. Optics and Lasers in Engineering. 2021;141. https://doi.org/10.1016/j.optlaseng.2021.106562. | 
		
				| [41] | Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical wave-guides. J Lightwave Technol. 1993;11(8):1377–84. https://doi.org/10.1109/50.254098. | 
		
				| [42] | Moore ED, McLeod RR. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry. Opt Express. 2008;16(17):13139–49. https://doi.org/10.1364/oe.16.013139. | 
		
				| [43] | Jacquin O, Lacot E, Felix C, Hugon O. Laser optical feedback imaging insensitive to parasitic optical feedback. Appl Opt. 2007;46(27):6779–82. https://doi.org/10.1364/ao.46.006779. | 
		
				| [44] | Zhang Y, Hines AS, Valdes G, Guzman F. Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer. Sensors (Basel). 2021;21(17). https://doi.org/10.3390/s21175788. | 
		
				| [45] | Deborah M. Kane, K. Alan Shore. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers. Chichester: John Wiley & Sons Ltd; 2005. | 
		
				| [46] | Tan Y, Zhang S, Zhang S, Zhang Y, Liu N. Response of microchip solid-state laser to external frequency-shifted feedback and its applications. Sci Rep. 2013;3:2912. https://doi.org/10.1038/srep02912. | 
		
				| [47] | Zhang X, Pouls J, Wu MC. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt Express. 2019;27(7):9965–74. https://doi.org/10.1364/OE.27.009965. | 
		
				| [48] | Zhao Y, Wang C, Zhao Y, Zhu D, Lu L. An all-fiber self-mixing range finder with tunable fiber ring cavity laser source. Journal of Lightwave Technology. 2020:1-. https://doi.org/10.1109/jlt.2020.3043331. | 
		
				| [49] | Zehao Y, Cheng L, Guodong L. FMCW LiDAR with an FM nonlinear kernel function for dynamic-distance measurement. Optics Express. 2022;30(11). https://doi.org/10.1364/oe.458235. | 
		
				| [50] | Zheng J, Jia L, Zhai Y, Ni L, Gu W, Sun Y, et al. High-Precision Silicon-Integrated Frequency-Modulated Continuous Wave LiDAR Calibrated Using a Microresonator. ACS Photonics. 2022. https://doi.org/10.1021/acsphotonics.2c00562. | 
		
				| [51] | Lacot E, Hugon O. Frequency-shifted optical feedback in a pumping laser diode dynamically amplified by a microchip laser. Appl Opt. 2004;43(25):4915–21. https://doi.org/10.1364/ao.43.004915. | 
		
				| [52] | Qin J, Zhou Q, Xie W, Xu Y, Yu S, Liu Z, et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop. Opt Lett. 2015;40(19):4500–3. https://doi.org/10.1364/OL.40.004500. | 
		
				| [53] | Wu H, Zhang F, Liu T, Balling P, Li J, Qu X. Long distance measurement using optical sampling by cavity tuning. Opt Lett. 2016;41(10):2366–9. https://doi.org/10.1364/OL.41.002366. |