留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Yifan Wang, Xin Xu, Zongren Dai, Ziyu Hua, Chenxiao Lin, Yubin Hou, Qian Zhang, Pu Wang, Yidong Tan. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters[J]. PhotoniX. doi: 10.1186/s43074-022-00067-z
Citation: Yifan Wang, Xin Xu, Zongren Dai, Ziyu Hua, Chenxiao Lin, Yubin Hou, Qian Zhang, Pu Wang, Yidong Tan. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters[J]. PhotoniX. doi: 10.1186/s43074-022-00067-z

doi: 10.1186/s43074-022-00067-z

Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters

Funds: The authors gratefully acknowledge the team of Prof. F Zhang from Tianjin University and the team of Prof. G Liu from Harbin Institute of Technology for technical support.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Coddington I, Swann WC, Nenadovic L, Newbury NR. Rapid and precise absolute distance measurements at long range. Nat Photonics. 2009;3(6):351–6. https://doi.org/10.1038/nphoton.2009.94.
    [2] Lu F, Milios E. Robot pose estimation in unknown environments by matching 2D range scans. J Intell Rob Syst. 1997;18(3):249–75. https://doi.org/10.1023/a:1007957421070.
    [3] Uttam D, Culshaw B. Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J Lightwave Technol. 1985;3(5):971–7. https://doi.org/10.1109/jlt.1985.1074315.
    [4] Trocha P, Kemal JN, Gaimard Q, Aubin G, Lelarge F, Ramdane A, et al. Ultra-fast optical ranging using quantum-dash mode-locked laser diodes. Sci Rep. 2022;12(1):1076. https://doi.org/10.1038/s41598-021-04368-4.
    [5] Mitchell EW, Hoehler MS, Giorgetta FR, Hayden T, Rieker GB, Newbury NR, et al. Coherent laser ranging for precision imaging through flames. Optica. 2018;5(8). https://doi.org/10.1364/optica.5.000988.
    [6] Levinson J, Askeland J, Becker J, Dolson J, Held D, Kammel S, et al. Towards Fully Autonomous Driving: Systems and Algorithms. IEEE Intelligent Vehicles Symposium (IV). 2011. p. 163–8. https://doi.org/10.1109/IVS.2011.5940562.
    [7] Steindorfer MA, Kirchner G, Koidl F, Wang P, Jilete B, Flohrer T. Daylight space debris laser ranging. Nat Commun. 2020;11(1):3735. https://doi.org/10.1038/s41467-020-17332-z.
    [8] Wang Z, Potsaid B, Chen L, Doerr C, Lee HC, Nielson T, et al. Cubic meter volume optical coherence tomography. Optica. 2016;3(12):1496–503. https://doi.org/10.1364/OPTICA.3.001496.
    [9] Ula RK, Noguchi Y, Iiyama K. Three-Dimensional Object Profiling Using Highly Accurate FMCW Optical Ranging System. J Lightwave Technol. 2019;37(15):3826–33. https://doi.org/10.1109/jlt.2019.2921353.
    [10] Lee J, Kim Y-J, Lee K, Lee S, Kim S-W. Time-of-flight measurement with femtosecond light pulses. Nat Photonics. 2010;4(10):716–20. https://doi.org/10.1038/nphoton.2010.175.
    [11] Martin A, Verheyen P, De Heyn P, Absil P, Feneyrou P, Bourderionnet J, et al. Photonic Integrated Circuit-Based FMCW Coherent LiDAR. J Lightwave Technol. 2018;36(19):4640–5. https://doi.org/10.1109/jlt.2018.2840223.
    [12] Dong Y, Zhu Z, Tian X, Qiu L, Ba D. Frequency-Modulated Continuous-Wave LIDAR and 3D Imaging by Using Linear Frequency Modulation Based on Injection Locking. J Lightwave Technol. 2021;39(8):2275–80. https://doi.org/10.1109/jlt.2021.3050772.
    [13] Hauser M, Hofbauer M. FPGA-Based EO-PLL With Repetitive Control for Highly Linear Laser Frequency Tuning in FMCW LIDAR Applications. IEEE Photonics J. 2022;14(1):1–8. https://doi.org/10.1109/jphot.2021.3139053.
    [14] Zhang F-M, Li Y-T, Pan H, Shi C-Z, Qu X-H. Vibration Compensation of the Frequency-Scanning-Interferometry-Based Absolute Ranging System. Applied Sciences. 2019;9(1). https://doi.org/10.3390/app9010147.
    [15] Cheng X, Liu J, Jia L, Zhang F, Qu X. Precision and repeatability improvement in frequency-modulated continuous-wave velocity measurement based on the splitting of beat frequency signals. Opt Express. 2021;29(18):28582–96. https://doi.org/10.1364/OE.433637.
    [16] Li B, Mo D, Wang P, Gan N, Lin M, Wang R, et al. FMCW lidar multitarget detection based on skeleton tree waveform matching. Appl Opt. 2021;60(27):8328–35. https://doi.org/10.1364/AO.431516.
    [17] Pan H, Qu X, Zhang F. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance. Opt Express. 2018;26(12):15186–98. https://doi.org/10.1364/oe.26.015186.
    [18] Baumann E, Giorgetta FR, Deschenes JD, Swann WC, Coddington I, Newbury NR. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt Express. 2014;22(21):24914–28. https://doi.org/10.1364/OE.22.024914.
    [19] Hao Y, Song P, Wang X, Pan Z. A Spectrum Correction Algorithm Based on Beat Signal of FMCW Laser Ranging System. Sensors (Basel). 2021;21(15). https://doi.org/10.3390/s21155057.
    [20] Okano M, Chong C. Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt Express. 2020;28(16):23898–915. https://doi.org/10.1364/OE.396707.
    [21] Norgia M, Melchionni D, Pesatori A. Self-mixing instrument for simultaneous distance and speed measurement. Opt Lasers Eng. 2017;99:31–8. https://doi.org/10.1016/j.optlaseng.2016.10.013.
    [22] Zhang X, Kwon K, Henriksson J, Luo J, Wu MC. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature. 2022;603(7900):253–8. https://doi.org/10.1038/s41586-022-04415-8.
    [23] Norgia M, Magnani A, Pesatori A. High resolution self-mixing laser rangefinder. Rev Sci Instrum. 2012;83(4): 045113. https://doi.org/10.1063/1.3703311.
    [24] Lu C, Xiang Y, Gan Y, Liu B, Chen F, Liu X, et al. FSI-based non-cooperative target absolute distance measurement method using PLL correction for the influence of a nonlinear clock. Opt Lett. 2018;43(9):2098–101. https://doi.org/10.1364/OL.43.002098.
    [25] Mateo AB, Barber ZW. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar. Appl Opt. 2015;54(19):5911–6. https://doi.org/10.1364/AO.54.005911.
    [26] Zhang K, Lv T, Mo D, Wang N, Wang R, Wu Y. Double sideband frequency scanning interferometry for distance measurement in the outdoor environment. Optics Communications. 2018;425:176–9. https://doi.org/10.1016/j.optcom.2018.04.056.
    [27] Ahmad Z, Liao Y-M, Kuo S-I, Chang Y-C, Chao R-L, Naseem, et al. High-Power and High-Responsivity Avalanche Photodiodes for Self-Heterodyne FMCW Lidar System Applications. IEEE Access. 2021;9:85661–71. https://doi.org/10.1109/access.2021.3089082.
    [28] Taimre T, Nikolic M, Bertling K, Lim YL, Bosch T, Rakic AD. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Advances in Optics and Photonics. 2015;7(3):570–631. https://doi.org/10.1364/aop.7.000570.
    [29] Giuliani G, Norgia M, Donati S, Bosch T. Laser diode self-mixing technique for sensing applications. Journal of Optics a-Pure and Applied Optics. 2002;4(6):S283–94. https://doi.org/10.1088/1464-4258/4/6/371.
    [30] Otsuka K. Self-mixing thin-slice solid-state laser Doppler velocimetry with much less than one feedback photon per Doppler cycle. Opt Lett. 2015;40(20):4603–6. https://doi.org/10.1364/ol.40.004603.
    [31] Lacot E, Day R, Stoeckel F. Coherent laser detection by frequency-shifted optical feedback. Physical Review A. 2001;64(4). https://doi.org/10.1103/PhysRevA.64.043815.
    [32] Zhu K, Guo B, Lu Y, Zhang S, Tan Y. Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica. 2017;4(7). https://doi.org/10.1364/optica.4.000729.
    [33] Zhao Y, Zhu D, Chen Y, Tu Y, Bi T, Zhao Y, et al. All-fiber self-mixing laser Doppler velocimetry with much less than 0.1 pW optical feedback based on adjustable gain. Optics Letters. 2020;45(13):3565–8. https://doi.org/10.1364/ol.397819.
    [34] Otsuka K, Ohtomo T, Makino H, Sudo S, Ko JY. Net motion of an ensemble of many Brownian particles captured with a self-mixing laser. Appl Phys Lett. 2009;94(24):3. https://doi.org/10.1063/1.3156826.
    [35] Mowla A, Bertling K, Wilson SJ, Rakic AD. Dual-Modality Confocal Laser Feedback Tomography for Highly Scattering Medium. IEEE Sens J. 2019;19(15):6134–40. https://doi.org/10.1109/jsen.2019.2910122.
    [36] Gouaux F, Servagent N, Bosch T. Absolute distance measurement with an optical feedback interferometer. Appl Opt. 1998;37(28):6684–9. https://doi.org/10.1364/ao.37.006684.
    [37] Lu C, Liu G, Liu B, Chen F, Gan Y. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration. Opt Express. 2016;24(26):30215–24. https://doi.org/10.1364/OE.24.030215.
    [38] Hugon O, Lacot E, Stoeckel F. Submicrometric displacement and vibration measurement using optical feedback in a fiber laser. Fiber Integr Opt. 2003;22(5):283–8. https://doi.org/10.1080/01468030390221696.
    [39] Szwaj C, Lacot E, Hugon O. Large linewidth-enhancement factor in a microchip laser. Physical Review A. 2004;70(3). https://doi.org/10.1103/PhysRevA.70.033809.
    [40] Xu Z, Li J, Zhang S, Tan Y, Zhang X, Lin X, et al. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity. Optics and Lasers in Engineering. 2021;141. https://doi.org/10.1016/j.optlaseng.2021.106562.
    [41] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical wave-guides. J Lightwave Technol. 1993;11(8):1377–84. https://doi.org/10.1109/50.254098.
    [42] Moore ED, McLeod RR. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry. Opt Express. 2008;16(17):13139–49. https://doi.org/10.1364/oe.16.013139.
    [43] Jacquin O, Lacot E, Felix C, Hugon O. Laser optical feedback imaging insensitive to parasitic optical feedback. Appl Opt. 2007;46(27):6779–82. https://doi.org/10.1364/ao.46.006779.
    [44] Zhang Y, Hines AS, Valdes G, Guzman F. Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer. Sensors (Basel). 2021;21(17). https://doi.org/10.3390/s21175788.
    [45] Deborah M. Kane, K. Alan Shore. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers. Chichester: John Wiley & Sons Ltd; 2005.
    [46] Tan Y, Zhang S, Zhang S, Zhang Y, Liu N. Response of microchip solid-state laser to external frequency-shifted feedback and its applications. Sci Rep. 2013;3:2912. https://doi.org/10.1038/srep02912.
    [47] Zhang X, Pouls J, Wu MC. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt Express. 2019;27(7):9965–74. https://doi.org/10.1364/OE.27.009965.
    [48] Zhao Y, Wang C, Zhao Y, Zhu D, Lu L. An all-fiber self-mixing range finder with tunable fiber ring cavity laser source. Journal of Lightwave Technology. 2020:1-. https://doi.org/10.1109/jlt.2020.3043331.
    [49] Zehao Y, Cheng L, Guodong L. FMCW LiDAR with an FM nonlinear kernel function for dynamic-distance measurement. Optics Express. 2022;30(11). https://doi.org/10.1364/oe.458235.
    [50] Zheng J, Jia L, Zhai Y, Ni L, Gu W, Sun Y, et al. High-Precision Silicon-Integrated Frequency-Modulated Continuous Wave LiDAR Calibrated Using a Microresonator. ACS Photonics. 2022. https://doi.org/10.1021/acsphotonics.2c00562.
    [51] Lacot E, Hugon O. Frequency-shifted optical feedback in a pumping laser diode dynamically amplified by a microchip laser. Appl Opt. 2004;43(25):4915–21. https://doi.org/10.1364/ao.43.004915.
    [52] Qin J, Zhou Q, Xie W, Xu Y, Yu S, Liu Z, et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop. Opt Lett. 2015;40(19):4500–3. https://doi.org/10.1364/OL.40.004500.
    [53] Wu H, Zhang F, Liu T, Balling P, Li J, Qu X. Long distance measurement using optical sampling by cavity tuning. Opt Lett. 2016;41(10):2366–9. https://doi.org/10.1364/OL.41.002366.
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-15
  • 录用日期:  2022-08-20
  • 网络出版日期:  2022-09-30

目录

    /

    返回文章
    返回