留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Jiaqi Zhou, Weiwei Pan, Weiao Qi, Xinru Cao, Zhi Cheng, Yan Feng. Ultrafast Raman fiber laser: a review and prospect[J]. PhotoniX. doi: 10.1186/s43074-022-00064-2
Citation: Jiaqi Zhou, Weiwei Pan, Weiao Qi, Xinru Cao, Zhi Cheng, Yan Feng. Ultrafast Raman fiber laser: a review and prospect[J]. PhotoniX. doi: 10.1186/s43074-022-00064-2

doi: 10.1186/s43074-022-00064-2

Ultrafast Raman fiber laser: a review and prospect

Funds: This work was supported by Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2022247), National Natural Science Foundation of China (No. 62075226, 62175244) and Natural Science Foundation of Shanghai (No. 21ZR1472200). Youth Innovation Promotion Association, Chinese Academy of Sciences, 2022247, Jiaqi Zhou, National Natural Science Foundation of China, 62075226, Yan Feng, 62175244, Jiaqi Zhou, Natural Science Foundation of Shanghai, 21ZR1472200, Jiaqi Zhou.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–502. https://doi.org/10.1038/187493a0.
    [2] Mcclure RE. Mode locking behavior of gas laser in long cavities. Appl Phys Lett. 1965;77:148–53. https://doi.org/10.1063/1.1754350.
    [3] Zewail AH. Femtochemistry: Recent progress in studies of dynamics and control of reactions and their transition states. J Phys Chem. 1996;100:12701–4. https://doi.org/10.1007/978-3-642-56800-8_30.
    [4] Jones DJ, Diddams SA, Ranka JK, Stentz A, Windeler RS, Hall JL, Cundiff ST. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science. 2000;288:635–45. https://doi.org/10.1126/science.288.5466.635.
    [5] Strickland D, Mourou G. Compression of Amplified Chirped Optical Pulses. Opt Commun. 1985;56:219–23. https://doi.org/10.1016/0030-4018(85)90151-8.
    [6] Fermann ME, Hartl I. Ultrafast fibre lasers. Nat Photonics. 2013;7:868–77. https://doi.org/10.1038/nphoton.2013.280.
    [7] Fu W, Wright LG, Sidorenko P, Backus S, Wise FW. Several new directions for ultrafast fiber lasers. Opt Express. 2018;26:9432–532. https://doi.org/10.1364/OE.26.009432.
    [8] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photonics. 2012;6:84–9. https://doi.org/10.1038/nphoton.2011.345.
    [9] Liu X, Yao X, Cui Y. Real-Time Observation of the Buildup of Soliton Molecules. Phys Rev Lett. 2018;121: 023905. https://doi.org/10.1103/PhysRevLett.121.023905.
    [10] Dyball H. Yellow laser hit the spot. Electron. Lett. 2010;46:545. https://doi.org/10.1049/el.2010.9031.
    [11] Grosche G, Lipphardt B, Schnatz H. Optical frequency synthesis and measurement using fiber-based femtosecond lasers. Eur. Phys. J. D. 2008;48:27–7. https://doi.org/10.1140/epjd/e2008-00065-7.
    [12] Murray RT, Kelleher EJR, Popov SV, Mussot A, Kudlinski A, Taylor JR. Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion. Opt Express. 2013;21:15826–8. https://doi.org/10.1364/OE.21.015826.
    [13] Chung H, Liu W, Cao Q, Kartner FX, Chang G. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 μm. Opt. Express. 2017;25:15760–12. https://doi.org/10.1364/OE.25.015760.
    [14] Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica. 2018;5:1264–7. https://doi.org/10.1364/OPTICA.5.001264.
    [15] Feng Y. Raman fiber lasers. Chap. 2. 1st ed. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-65277-1.
    [16] Supradeepa VR, Feng Y, Nicholson WJ. Raman fiber lasers. J Opt. 2017;19: 023001. https://doi.org/10.1088/2040-8986/19/2/023001.
    [17] Zhang L, Jiang H, Cui S, Hu J, Feng Y. Versatile Raman fiber laser for sodium laser guide star. Laser Photonics Rev. 2014;8:889–7. https://doi.org/10.1002/lpor.201400055.
    [18] Zhang L, Jiang H, Yang X, Pan W, Cui S, Feng Y. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci Rep. 2017;7:42611. https://doi.org/10.1038/srep42611.
    [19] Gladyshev A, Yatsenko Y, Kolyadin A, Kompanets V, Bufetov I. Mid-infrared 10-μJ-level sub-picosecond pulse generation via stimulated Raman scattering in a gas-filled revolver fiber. Opt Mater Express. 2020;10:3081–9. https://doi.org/10.1364/OME.411364.
    [20] Wang Y, Dasa M, Adamu A, Antonio-Lopez J, Habib M, Amezcua-Correa R, Bang O, Markos C. Mid-IR gas-filled Raman fiber laser at 4.22 μm with high pulse energy and efficiency. OSA High-brightness Sources and Light-driven Interactions Congress. 2020; MTh1C.6. https://doi.org/10.1364/MICS.2020.MTh1C.6.
    [21] Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–79. https://doi.org/10.1038/nbt899.
    [22] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 2006;50:823–917. https://doi.org/10.1016/j.neuron.2006.05.019.
    [23] Hoover EE, Squier JA. Advances in multiphoton microscopy technology. Nat Photonics. 2013;7:93–9. https://doi.org/10.1038/nphoton.2012.361.
    [24] Chen F, Aldana JRV. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014;8:251–325. https://doi.org/10.1002/lpor.201300025.
    [25] Hamperl J, Geus JF, Mølster KM, Zukauskas A, Dherbecourt JB, Pasiskevicius V, Nagy L, Pitz O, Fehrenbacher D, Schaefer H, Heinecke D, Strotkamp M, Rapp S, Denk P, Graf N, Dalin M, Lebat V, Santagata R, Melkonian JM, Godard A, Raybaut M, Flamant C. High Energy Parametric Laser Source and Frequency-Comb-Based Wavelength Reference for CO2 and Water Vapor DIAL in the 2 µm Region: Design and Pre-Development Experimentations. Atmosphere. 2021;12:402. https://doi.org/10.3390/atmos12030402.
    [26] Nugent-Glandorf L, Neely T, Adler F, Fleisher AJ, Cossel KC, Bjork B, Dinneen T, Ye J, Diddams SA. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt Lett. 2012;37:3285–93. https://doi.org/10.1364/OL.37.003285.
    [27] Feng Y. Raman fiber lasers. Chap. 1. 1st ed. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-65277-1.
    [28] Yang X, Zhang L, Jiang H, Fan T, Feng Y. Actively mode-locked Raman fiber laser. Opt Express. 2015;23:19831–6. https://doi.org/10.1364/oe.23.019831.
    [29] Kuznetsov AG, Kharenko DS, Podivilov EV, Babin SA. Fifty-ps Raman fiber laser with hybrid active-passive mode locking. Opt Express. 2016;24:16280–7. https://doi.org/10.1364/OE.24.016280.
    [30] Chamorovskiy A, Rautiainen J, Lyytikäinen J, Ranta S, Tavast M, Sirbu A, Kapon E, Okhotnikov OG. Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror. Opt Lett. 2010;35:3529–33. https://doi.org/10.1364/OL.35.003529.
    [31] Castellani CES, Kelleher EJR, Travers JC, Popa D, Hasan T, Sun Z, Flahaut E, Ferrari AC, Popov SV, Taylor JR. Ultrafast Raman laser mode-locked by nanotubes. Opt Lett. 2011;36:3996–4003. https://doi.org/10.1364/OL.36.003996.
    [32] Castellani CES, Kelleher EJR, Popa D, Hasan T, Sun Z, Ferrari AC, Popov SV, Taylor JR. CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes. Laser Phys. Lett. 2013;10:015101. https://doi.org/10.1088/1612-2011/10/1/015101.
    [33] Steinberg D, Saito LAM, Rosa HG, Thoroh de Souza EA. Single-walled carbon nanotube passively mode-locked O-band Raman fiber laser. Opt. Laser Technol. 2016;79:55–7. https://doi.org/10.1016/j.optlastec.2015.11.012.
    [34] Zhang L, Wang G, Hu J, Wang J, Fan J, Wang J, Feng Y. Linearly polarized 1180-nm Raman fiber laser mode locked by Graphene. IEEE Photonics J. 2012;4:1809–17. https://doi.org/10.1109/JPHOT.2012.2218231.
    [35] Chamorovskiy A, Rantamäki A, Sirbu A, Mereuta A, Kapon E, Okhotnikov OG. 1.38-μm mode-locked Raman fiber laser pumped by semiconductor disk laser. Opt. Express. 2010;18:23872–6. https://doi.org/10.1364/OE.18.023872.
    [36] Kuang Q, Zhan L, Gu Z, Wang Z. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser. J Lightwave Technol. 2015;33:391–5. https://doi.org/10.1109/JLT.2014.2375339.
    [37] Liu J, Chen Y, Tang P, Miao L, Zhao C, Wen S, Fan D. Duration switchable high-energy passively mode-locked Raman fiber laser based on nonlinear polarization evolution. IEEE Photonics J. 2015;7:1503207. https://doi.org/10.1109/JPHOT.2015.2477515.
    [38] Pan W, Zhang L, Zhou J, Yang X, Feng Y. Raman dissipative soliton fiber laser pumped by an ASE source. Opt Lett. 2017;42:5162–4. https://doi.org/10.1364/OL.42.005162.
    [39] Chestnut DA, Taylor JR. Wavelength-versatile sub-picosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries. Opt Lett. 2005;30:2982–3. https://doi.org/10.1364/OL.30.002982.
    [40] Aguergaray C, Méchin D, Kruglov V, Harvey JD. Experimental realization of a mode-locked parabolic Raman fiber oscillator. Opt Express. 2010;18:8680–8. https://doi.org/10.1364/oe.18.008680.
    [41] Pan W, Zhou J, Zhang L, Feng Y. Rectangular pulse generation from a mode locked Raman fiber laser. J Lightwave Technol. 2019;37:1333–5. https://doi.org/10.1109/JLT.2019.2892779.
    [42] Pan W, Zhou J, Zhang L, Feng Y. Raman dissipative soliton fiber laser mode locked by a nonlinear optical loop mirror. Opt Express. 2019;27:17905–7. https://doi.org/10.1364/OE.27.017905.
    [43] Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H, Premaratne M, Sun B, Cheng H, Li S, Ren W, Bao Q. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics. 2018;5:1808–9. https://doi.org/10.1021/acsphotonics.7b01428.
    [44] Zhang B, Liu J, Wang C, Yang K, Lee C, Zhang H, He J. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photonics Rev. 2020;14:1900240. https://doi.org/10.1002/lpor.201900240.
    [45] Fang Y, Ge Y, Wang C, Zhang H. Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev. 2020;14:1900098. https://doi.org/10.1002/lpor.201900098.
    [46] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R, Zhang C, Wei K, Li H, Chen H, Zhang R, Zheng X, Xu Z, Cheng X, Zhang H. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res. 2020;8:78–13. https://doi.org/10.1364/PRJ.8.000078.
    [47] Hofer M, Fermann ME, Haberl F, Ober MH, Schmidt AJ. Mode locking with cross-phase and self-phase modulation. Opt Lett. 1991;16:502–3. https://doi.org/10.1109/10.1364/OL.16.000502.
    [48] Zhou J, Pan W, Gu X, Zhang L, Feng Y. Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber. Opt Express. 2018;26:4166–76. https://doi.org/10.1364/OE.26.004166.
    [49] Doran NJ, Wood D. Nonlinear-optical loop mirror. Opt Lett. 1988;13:56–63. https://doi.org/10.1364/OL.13.000056.
    [50] Agrawal G. Nonlinear fiber optics. 5th ed. Academic Press; 2013. https://doi.org/10.1016/C2011-0-00045-5.
    [51] Babin SA, Podivilov EV, Kharenko DS, Bednyakova AE, Fedoruk MP, Kalashnikov VL, Apolonski A. Multicolour nonlinearly bound chirped dissipative solitons. Nat Commun. 2014;5:4653. https://doi.org/10.1038/ncomms5653.
    [52] Churin D, Olson J, Norwood RA, Peyghambarian N, Kieu K. High-power synchronously pumped femtosecond Raman fiber laser. Opt Lett. 2015;40:2529–34. https://doi.org/10.1364/OL.40.002529.
    [53] Kharenko DS, Efremov VD, Evmenova EA, Babin SA. Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity. Opt. Express. 2018;26:15084–6.
    [54] Kobtsev S, Kukarin S, Kokhanovskiy A. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre. Opt Express. 2015;23:18548–56. https://doi.org/10.1364/OE.23.018548.
    [55] Chen H, Chen S, Jiang Z, Yin K, Hou J. All-fiberized synchronously pumped 1120 nm picosecond Raman laser with flexible output dynamics. Opt Express. 2015;23:24088–9. https://doi.org/10.1364/oe.23.024088.
    [56] Pan W, Zhang L, Jiang H, Yang X, Cui S, Feng Y. Ultrafast Raman fiber laser with random distributed feedback. Laser Photonics Rev. 2018;12:1700326. https://doi.org/10.1002/lpor.201700326.
    [57] Stolen RH, Lin C, Jain RK. A time-dispersion-tuned fiber Raman oscillator. Appl Phys Lett. 1977;30:340–3. https://doi.org/10.1063/1.89391.
    [58] Lin C, French WG. A near-infrared fiber Raman oscillator tunable from 1.07 to 1.32 μm. Appl. Phys. Lett. 1979;34:666–3. https://doi.org/10.1063/1.90630.
    [59] Nakazawa M, Kuznetsov M, Ippen EP. Theory of the synchronously pumped fiber Raman laser. IEEE J Quantum Electron. 1986;22:1953–2014. https://doi.org/10.1109/JQE.1986.1072892.
    [60] Smith K, Kean PN, Crust DW, Sibbett W. An Experimental Study of a Synchronously Pumped Fibre Raman Oscillator. J Mod Opt. 1987;34:1227–37. https://doi.org/10.1080/09500348714551111.
    [61] Lin D, Alam S, The PS, Chen KK, Richardson DJ. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses. Opt Lett. 2011;36:2050–3. https://doi.org/10.1364/ol.36.002050.
    [62] Stolen RH, Johnson AM. The effect of pulse walkoff on stimulated Raman scattering in fibers. IEEE J Quantum Electron. 1986;22:2154–7. https://doi.org/10.1109/JQE.1986.1072908.
    [63] Zhao Q, Pan W, Zeng X, Feng Y. Partially coherent noise-like pulse generation in amplified spontaneous Raman emission. Appl Opt. 2018;57:2282–5. https://doi.org/10.1364/AO.57.002282.
    [64] Qi W, Zhou J, Cui S, Cheng X, Zeng X, Feng Y. Femtosecond pulse generation by nonlinear optical gain modulation. Adv Photonics Res. 2021;3:2100255. https://doi.org/10.1002/adpr.202100255.
    [65] Qi W, Zhou J, Feng Y. Nonlinear optical gain modulation: a novel method to generate highly-coherent femtosecond pulses. 2022 Conference on Lasers and Electro-Optics (CLEO). 2022:SM3O.5.
    [66] Zhou J, Qi W, Pan W, Feng Y. Dissipative soliton generation from a large anomalous dispersion ytterbium-doped fiber laser. Opt Lett. 2020;45:5768–74. https://doi.org/10.1364/OL.406104.
    [67] Qi W, Zhou J, Cao X, Cheng Z, Jiang H, Cui S, Feng Y. Cascaded nonlinear optical gain modulation towards coherent femtosecond pulse generation with wavelength versatility. Opt Express. 2022;30:8889–99. https://doi.org/10.1364/OE.452637.
    [68] Kotanigawa T, Matsuda T, Kataoka T. Applicable wavelength range of U-band signals in in-line Raman amplifier WDM systems. Electron Lett. 2003;39:999–1002. https://doi.org/10.1049/el:20030612.
    [69] Wright LG, Sidorenko P, Pourbeyram H, Ziegler ZM, Isichenko A, Malomed BA, Menyuk CR, Christodoulides DN, Wise FW. Mechanisms of spatiotemporal mode-locking. Nat Phys. 2020;16:565–6. https://doi.org/10.1038/s41567-020-0784-1.
    [70] Chen Y, Fan C, Yao T, Xiao H, Leng J, Zhou P, Nemov IN, Kuznetsov AG, Babin SA. Brightness enhancement in random Raman fiber laser based on a graded-index fiber with high-power multimode pumping. Opt Lett. 2021;46:1185–94. https://doi.org/10.1364/OL.416740.
    [71] Fu W, Wright LG, Wise FW. High-power femtosecond pulses without a modelocked laser. Optica. 2017;4:831–4. https://doi.org/10.1364/OPTICA.4.000831.
    [72] Herink G, Jalali B, Ropers C, Solli D. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat Photonics. 2016;10:321–7. https://doi.org/10.1038/nphoton.2016.38.
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 录用日期:  2022-07-10
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回