| [1] | Kubby JA. Adaptive Optics for Biological Imaging. Boca Raton: CRC Press; 2013. | 
		
				| [2] | Ahn C, Hwang B, Nam K, Jin H, Woo T, Park J-H. Overcoming the penetration depth limit in optical microscopy: adaptive optics and wavefront shaping. J Innovative Optical Health Sci. 2019;12(04):1930002. | 
		
				| [3] | Booth MJ. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl. 2014;3(4):e165. | 
		
				| [4] | Ji N. Adaptive optical fluorescence microscopy. Nat Methods. 2017;14(4):374–80. | 
		
				| [5] | Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun. 2015;6(1):7276. | 
		
				| [6] | Tao X, Fernandez B, Azucena O, Fu M, Garcia D, Zuo Y, et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt Lett. 2011;36(7):1062–4. | 
		
				| [7] | Azucena O, Crest J, Kotadia S, Sullivan W, Tao X, Reinig M, et al. Adaptive optics wide-field microscopy using direct wavefront sensing. Opt Lett. 2011;36(6):825–7. | 
		
				| [8] | Débarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T. Image-based adaptive optics for two-photon microscopy. Opt Lett. 2009;34(16):2495–7. | 
		
				| [9] | Débarre D, Booth MJ, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies. Opt Express. 2007;15(13):8176–90. | 
		
				| [10] | Booth MJ. Wavefront sensorless adaptive optics for large aberrations. Opt Lett. 2007;32(1):5–7. | 
		
				| [11] | Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods. 2010;7(2):141–7. | 
		
				| [12] | Chen W, Natan RG, Yang Y, Chou S-W, Zhang Q, Isacoff EY, et al. In vivo volumetric imaging of calcium and glutamate activity at synapses with high spatiotemporal resolution. Nat Commun. 2021;12(1):6630. | 
		
				| [13] | Ji N, Sato TR, Betzig E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci. 2012;109(1):22. | 
		
				| [14] | Milkie DE, Betzig E, Ji N. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination. Opt Lett. 2011;36(21):4206–8. | 
		
				| [15] | Wang C, Liu R, Milkie DE, Sun W, Tan Z, Kerlin A, et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat Methods. 2014;11(10):1037–40. | 
		
				| [16] | Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011;5(1):81–101. | 
		
				| [17] | Gould TJ, Burke D, Bewersdorf J, Booth MJ. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express. 2012;20(19):20998–1009. | 
		
				| [18] | Patton BR, Burke D, Owald D, Gould TJ, Bewersdorf J, Booth MJ. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt Express. 2016;24(8):8862–76. | 
		
				| [19] | Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO, Xu X, et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat Photonics. 2013;7(6):449–53. | 
		
				| [20] | Zhao G, Rong Z, Kuang C, Zheng C, Liu X. 3D fluorescence emission difference microscopy based on spatial light modulator. J Innov Optical Health Sci. 2016;9(03):1641003. | 
		
				| [21] | Tian N, Fu L, Gu M. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam. Sci Rep. 2015;5(1):13580. | 
		
				| [22] | Southwell WH. Wave-front estimation from wave-front slope measurements. J Opt Soc Am. 1980;70(8):998–1006. | 
		
				| [23] | Panagopoulou SI, Neal DP. Zonal matrix iterative method for wavefront reconstruction from gradient measurements. J Refract Surg. 2005;21(5):S563–S9. | 
		
				| [24] | Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, et al. Breaking the diffraction barrier using fluorescence emission difference microscopy. Sci Rep. 2013;3(1):1441. | 
		
				| [25] | Dehez H, Piché M, De Koninck Y. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging. Opt Express. 2013;21(13):15912–25. | 
		
				| [26] | Rodríguez C, Chen A, Rivera JA, Mohr MA, Liang Y, Natan RG, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat Methods. 2021;18(10):1259–64. | 
		
				| [27] | Wang C, Ji N. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy. Opt Lett. 2012;37(11):2001–3. | 
		
				| [28] | Leutenegger M, Rao R, Leitgeb RA, Lasser T. Fast focus field calculations. Opt Express. 2006;14(23):11277–91. | 
		
				| [29] | Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369–77. | 
		
				| [30] | Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12. | 
		
				| [31] | Qi S, Li H, Lu L, Qi Z, Liu L, Chen L, et al. Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy. eLife. 2016;5:e14756. | 
		
				| [32] | Shen Z, Lu Z, Chhatbar PY, O'Herron P, Kara P. An artery-specific fluorescent dye for studying neurovascular coupling. Nat Methods. 2012;9(3):273–6. |