| [1] | Kellner-Weibel G, et al. Crystallization of Free Cholesterol in Model Macrophage Foam Cells. Atertio Thromb Vasc Biol. 1999;19:1891–8. https://doi.org/10.1161/01.ATV.19.8.1891. | 
		
				| [2] | Yue S, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393–406. https://doi.org/10.1016/j.cmet.2014.01.019. | 
		
				| [3] | Zumbusch A, Holtom GR, Xie XS. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett. 1999;82:4142. https://doi.org/10.1103/PhysRevLett.82.4142. | 
		
				| [4] | Cheng JX, Xie XS. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B. 2004;108:827–40. https://doi.org/10.1021/jp035693v. | 
		
				| [5] | Yue S, Cheng JX. Deciphering single cell metabolism by coherent Raman scattering microscopy. Curr Opin Chem Biol. 2016;33:46–57. https://doi.org/10.1016/j.cbpa.2016.05.016. | 
		
				| [6] | Lee YJ, et al. Quantitative, label-free characterization of stem cell differentiation at the single-cell level by broadband coherent anti-Stokes Raman scattering microscopy. Tissue Eng, Part C. 2014;20:562–9. https://doi.org/10.1089/ten.tec.2013.0472. | 
		
				| [7] | Di Napoli C, et al. Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral CARS microscopy in living human adipose-derived stem cells. Anal Chem. 2016;88:3677–85. https://doi.org/10.1021/acs.analchem.5b04468. | 
		
				| [8] | Hofemeier AD, et al. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Sci Rep. 2016;6:26716. https://doi.org/10.1038/srep26716. | 
		
				| [9] | Capitaine E, et al. Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells. Biomed Opt Express. 2018;9:245–53. | 
		
				| [10] | Untracht GR, Karnowski K, Sampson DD. Imaging the small with the small: Prospects for photonics in micro-endomicroscopy for minimally invasive cellular-resolution bioimaging. APL Photonics. 2021;6: 060901. | 
		
				| [11] | Wang H, Huff TB, Cheng JX. Coherent anti-Stokes Raman scattering imaging with a laser source delivered by a photonic crystal fiber. Opt Lett. 2006;31:1417–9. https://doi.org/10.1364/OL.31.001417. | 
		
				| [12] | Balu M, Liu GJ, Chen ZP, Tromberg BJ, Potma EO. Fiber delivered probe for efficient CARS imaging of tissues. Opt Express. 2010;18:2380–8. https://doi.org/10.1364/OE.18.002380. | 
		
				| [13] | Smith B, et al. Portable, miniaturized, fibre delivered, multimodal CARS exoscope. Opt Express. 2013;21:17161–75. https://doi.org/10.1364/OE.21.017161. | 
		
				| [14] | Chen X, Xu X, McCormick DT, Wong K, Wong ST. Multimodal nonlinear endo-microscopy probe design for high resolution, label-free intraoperative imaging. Biomed Opt Express. 2015;6:2283–93. https://doi.org/10.1364/BOE.6.002283. | 
		
				| [15] | Lukić A, et al. Fiber probe for nonlinear imaging applications. J Biophotonics. 2016;9:138–43. | 
		
				| [16] | Lukic A, et al. Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica. 2017;4:496–501. https://doi.org/10.1364/OPTICA.4.000496. | 
		
				| [17] | Kim SH, et al. Multiplex coherent anti-stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circul Res. 2010;106:1332–41. https://doi.org/10.1161/CIRCRESAHA.109.208678. | 
		
				| [18] | Lombardini, A. et al. High-resolution multimodal flexible coherent Raman endoscope. Light Sci Appl. 2018;7:1–8. https://doi.org/10.1038/s41377-018-0003-3. | 
		
				| [19] | Wang J, et al. SERS-active fiber tip for intracellular and extracellular pH sensing in living single cells. Sens Actuators B: Chem. 2019;290:527–34. https://doi.org/10.1016/j.snb.2019.03.149. | 
		
				| [20] | Yang Q, et al. Fiber-optic-based micro-probe using hexagonal 1-in-6 fiber configuration for intracellular single-cell pH measurement. Anal Chem. 2015;87:7171–9. https://doi.org/10.1021/acs.analchem.5b01040. | 
		
				| [21] | Kasili PM, Song JM, Vo-Dinh T. Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc. 2004;126:2799–806. https://doi.org/10.1021/ja037388t. | 
		
				| [22] | Liang F, et al. Direct tracking of amyloid and tau dynamics in neuroblastoma cells using nanoplasmonic fiber tip probes. Nano Lett. 2016;16:3989–94. https://doi.org/10.1021/acs.nanolett.6b00320. | 
		
				| [23] | Zheng XT, Yang HB, Li CM. Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem. 2010;82:5082–7. https://doi.org/10.1021/ac100074n. | 
		
				| [24] | Liu Z, Guo C, Yang J, Yuan L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt Express. 2006;14:12510–6. https://doi.org/10.1364/OE.14.012510. | 
		
				| [25] | Cole R, Slepkov A. Interplay of pulse bandwidth and spectral resolution in spectral-focusing CARS microscopy. JOSA B. 2018;35:842–50. https://doi.org/10.1364/JOSAB.35.000842. | 
		
				| [26] | Wang Z, et al. Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers. Opt Express. 2011;19:7960–70. https://doi.org/10.1364/OE.19.007960. | 
		
				| [27] | Wang Z, et al. Use of multimode optical fibers for fiber-based coherent anti-Stokes Raman scattering microendoscopy imaging. Opt Lett. 2011;36:2967–9. https://doi.org/10.1364/OL.36.002967. | 
		
				| [28] | Kipcak A, Senberber F, Derun EM, Piskin S. Evaluation of the magnesium wastes with boron oxide in magnesium borate synthesis. J Mater Metall Eng. 2012;6:610–4. https://doi.org/10.5281/zenodo.1056553. | 
		
				| [29] | Armand P, Lignie A, Beaurain M, Papet P. Flux-grown piezoelectric materials: application to α-quartz analogues. Curr Comput-Aided Drug Des. 2014;4:168–89. https://doi.org/10.3390/cryst4020168. | 
		
				| [30] | Khan R, Gul B, Khan S, Nisar H, Ahmad I. Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagn Photodyn Ther. 2021;33: 102192. https://doi.org/10.1016/j.pdpdt.2021.102192. | 
		
				| [31] | Yu YI, Lazareva EN, Tuchin VV. Refractive index of adipose tissue and lipid droplet measured in wide spectral and temperature ranges. Appl Opt. 2018;57:4839–4848. https://doi.org/10.1364/AO.57.004839. | 
		
				| [32] | Gerrity RG. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981;103:181–90. | 
		
				| [33] | Takaku M, et al. An in vitro coculture model of transmigrant monocytes and foam cell formation. Atertio Thromb Vasc Biol. 1999;19:2330–9. | 
		
				| [34] | Li Y, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol. 2001;7:630–6. https://doi.org/10.3748/wjg.v7.i5.630. | 
		
				| [35] | Cheng JX, Potma EO, Xie SX. Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity. J Phys Chem A. 2002;106:8561–8. https://doi.org/10.1021/jp025774b. |