| [1] | Fermann ME, Hartl I. Ultrafast fiber laser technology. IEEE J Select Topics Quantum Electron. 2009;15(1):191–204. https://doi.org/10.1109/JSTQE.2008.2010246. | 
		
				| [2] | Fermann ME, Hartl I. Ultrafast fibre lasers. Nat Photonics. 2013;7(11):868–74. https://doi.org/10.1038/nphoton.2013.280. | 
		
				| [3] | Zervas MN, Codemard CA. High power fiber lasers: A review. IEEE J Select Topics Quantum Electron. 2014;20(5):219–41. https://doi.org/10.1109/JSTQE.2014.2321279. | 
		
				| [4] | Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers. Nat Photonics. 2013;7(11):861–7. https://doi.org/10.1038/nphoton.2013.273. | 
		
				| [5] | Liu Z, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited]. J Opt Soc Am B. 2017;34(3):A7. https://doi.org/10.1364/josab.34.0000a7. | 
		
				| [6] | Xu C, Wise FW. Recent advances in fibre lasers for nonlinear microscopy. Nat Photonics. 2013;7(11):875–82. https://doi.org/10.1038/nphoton.2013.284. | 
		
				| [7] | Kapron FP, Keck DB. Pulse Transmission Through a Dielectric Optical Waveguide. Appl Opt. 1971;10(7):1519. https://doi.org/10.1364/ao.10.001519. | 
		
				| [8] | Li T. Optical Fibers for Communications. Opt News. 1977;3(3):10–5. https://doi.org/10.1364/on.3.2.000010. | 
		
				| [9] | Olsen FO, Hansen KS, Nielsen JS. Multibeam fiber laser cutting. J Laser Appl. 2009;21(3):133–8. https://doi.org/10.2351/1.3184436. | 
		
				| [10] | Yang J, Tang Y, Xu J. Development and applications of gain-switched fiber lasers [Invited]. Photonics Res. 2013;1(1):52. https://doi.org/10.1364/prj.1.000052. | 
		
				| [11] | Churkin DV, et al. Recent advances in fundamentals and applications of random fiber lasers. Adv Opt Photon. 2015;7(3):516. https://doi.org/10.1364/aop.7.000516. | 
		
				| [12] | Fu S, et al. Review of recent progress on single-frequency fiber lasers. J Opt Soc Am B. 2017;34(3):A49. https://doi.org/10.1364/josab.34.000a49. | 
		
				| [13] | Shang C, et al. Review on wavelength-tunable pulsed fiber lasers based on 2D materials. Opt Laser Technol. 2020;131(September 2019). https://doi.org/10.1016/j.optlastec.2020.106375. | 
		
				| [14] | Dragic PD, Cavillon M, Ballato J. Materials for optical fiber lasers: A review. Appl Phys Rev. 2018;5(4). https://doi.org/10.1063/1.5048410. | 
		
				| [15] | Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 2000;44(1–2):207–19. https://doi.org/10.1147/rd.441.0206. | 
		
				| [16] | De Santana LMQ, et al. Deep Neural Networks for Acoustic Modeling in the Presence of Noise. IEEE Lat Am Trans. 2018;16(3):918–25. https://doi.org/10.1109/TLA.2018.8358674. | 
		
				| [17] | Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90. https://doi.org/10.1145/3065386. | 
		
				| [18] | Jiao Z, et al. Machine learning and deep learning in chemical health and safety: A systematic review of techniques and applications. J Chem Health Saf. 2020;27(6):316–34. https://doi.org/10.1021/acs.chas.0c00075. | 
		
				| [19] | Ongie G, et al. Deep Learning Techniques for Inverse Problems in Imaging. IEEE J Select Areas Inform Theory. 2020;1(1):39–56. https://doi.org/10.1109/jsait.2020.2991563. | 
		
				| [20] | Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging. Optica. 2019;6(8):921. https://doi.org/10.1364/optica.6.000921. | 
		
				| [21] | Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020;1(1):1–24. https://doi.org/10.1186/s43074-020-00020-y. | 
		
				| [22] | Zuo C, et al. Deep learning in optical metrology: a review. Light Sci Appl. 2022;11(1). https://doi.org/10.1038/s41377-022-00714-x. | 
		
				| [23] | Musumeci F, et al. An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Commun Surv Tutorials. 2019;21(2):1383–408. https://doi.org/10.1109/COMST.2018.2880039. | 
		
				| [24] | Wang D, et al. Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach. J Lightwave Technol. 2020;38(17):4730–43. https://doi.org/10.1109/JLT.2020.2993271. | 
		
				| [25] | Zhang Y, et al. Ultrafast and Accurate Temperature Extraction via Kernel Extreme Learning Machine for BOTDA Sensors. J Lightwave Technol. 2021;39(5):1537–43. https://doi.org/10.1109/JLT.2020.3035810. | 
		
				| [26] | Ma W, et al. Deep learning for the design of photonic structures. Nat Photonics. 2021;15(2):77–90. https://doi.org/10.1038/s41566-020-0685-y. | 
		
				| [27] | Wiecha PR, et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res. 2021;9(5):B182. https://doi.org/10.1364/prj.415960. | 
		
				| [28] | Malkiel I, et al. Plasmonic nanostructure design and characterization via Deep Learning. Light Sci Appl. 2018;7(1). https://doi.org/10.1038/s41377-018-0060-7. | 
		
				| [29] | Situ G, Westbrook P. AI boosts photonics and vice versa AI boosts photonics and vice versa: AIP Publishing, LLC; 2020. https://doi.org/10.1063/5.0017902. | 
		
				| [30] | Woodward RI, Kelleher EJR. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt Lett. 2017;42(15):2952. https://doi.org/10.1364/ol.42.002952. | 
		
				| [31] | Wu X, et al. Intelligent Breathing Soliton Generation in Ultrafast Fiber Lasers. Laser Photonics Rev. 2022;16(2):2100191. https://doi.org/10.1002/lpor.202100191. | 
		
				| [32] | Nathan Kutz J, Fu X, Brunton S. Self-tuning fiber lasers: Machine learning applied to optical systems. Nonlinear Photonics. 2014;2014:1–2. https://doi.org/10.1364/np.2014.ntu4a.7. | 
		
				| [33] | Mitchell TM. Machine Learning. New York: McGraw-Hill; 1997. | 
		
				| [34] | Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In:  4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings; 2016. p. 1–16. | 
		
				| [35] | Tamir JI, Yu SX, Lustig M. Unsupervised Deep Basis Pursuit: Learning inverse problems without ground-truth data; 2019. p. 1–5. | 
		
				| [36] | van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn. 2020;109(2):373–440. https://doi.org/10.1007/s10994-019-05855-6. | 
		
				| [37] | Nilsson NJ. Introduction to Machine Learning. An early draft of a proposed textbook. Mach Learn. 2005;56(2):387–99 10.1.1.167.8023. | 
		
				| [38] | Shalev-Shwartz S, Ben-David S. Understanding Machine Learning, in Understanding Machine Learning: From Theory to Algorithms 9781107057. Cambridge: Cambridge University Press; 2014. https://doi.org/10.1017/CBO9781107298019. | 
		
				| [39] | Qiu J, et al. A survey of machine learning for big data processing. Eurasip J Adv Signal Process. 2016;(1). https://doi.org/10.1186/s13634-016-0355-x. | 
		
				| [40] | Martin E, et al. Semi-Supervised Learning. In:  Encyclopedia of Machine Learning. Boston: Springer; 2011. p. 892–7. https://doi.org/10.1007/978-0-387-30164-8_749. | 
		
				| [41] | Morales EF, Zaragoza JH. An introduction to reinforcement learning. In:  Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions; 2011. p. 63–80. https://doi.org/10.4018/978-1-60960-165-2.ch004. | 
		
				| [42] | Nousiainen J, et al. Adaptive optics control using model-based reinforcement learning. Opt Express. 2021;29(10):15327. https://doi.org/10.1364/oe.420270. | 
		
				| [43] | Brereton RG, Lloyd GR. Support Vector Machines for classification and regression. Analyst. 2010;135(2):230–67. https://doi.org/10.1039/b918972f. | 
		
				| [44] | Bo D, et al. Structural Deep Clustering Network. In:  The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020; 2020. p. 1400–10. https://doi.org/10.1145/3366423.3380214. | 
		
				| [45] | Min E, et al. A Survey of Clustering with Deep Learning: From the Perspective of Network Architecture. IEEE Access. 2018;6(July):39501–14. https://doi.org/10.1109/ACCESS.2018.2855437. | 
		
				| [46] | LeCun Y, et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989;1(4):541–51. https://doi.org/10.1162/neco.1989.1.4.541. | 
		
				| [47] | Lecun Y, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324. https://doi.org/10.1109/5.726791. | 
		
				| [48] | Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In:  5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings; 2017. p. 1–14. | 
		
				| [49] | Solomatine D, See LM, Abrahart RJ. Data-Driven Modelling: Concepts, Approaches and Experiences. Pract Hydroinf. 2008:17–30. https://doi.org/10.1007/978-3-540-79881-1_2. | 
		
				| [50] | Karniadakis GE, et al. Physics-informed machine learning. Nat Rev Physics. 2021;3(6):422–40. https://doi.org/10.1038/s42254-021-00314-5. | 
		
				| [51] | Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378(October):686–707. https://doi.org/10.1016/j.jcp.2018.10.045. | 
		
				| [52] | Raissi M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J Mach Learn Res. 2018;19:1–24. | 
		
				| [53] | Brunton SL, et al. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci U S A. 2016;113(15):3932–7. https://doi.org/10.1073/pnas.1517384113. | 
		
				| [54] | Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828. https://doi.org/10.1109/TPAMI.2013.50. | 
		
				| [55] | Yu D, et al. Deep learning and its applications to signal and information processing. IEEE Signal Process Mag. 2011;28(1):145–50. https://doi.org/10.1109/MSP.2010.939038. | 
		
				| [56] | Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539. | 
		
				| [57] | McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5(4):115–33. https://doi.org/10.1007/BF02478259. | 
		
				| [58] | Salehinejad H, et al. Recent Advances in Recurrent Neural Networks; 2017. p. 1–21. | 
		
				| [59] | Bennett KP, Parrado-Hernández E. The interplay of optimization and machine learning research. J Mach Learn Res. 2006;7:1265–81. https://doi.org/10.5555/1248547. | 
		
				| [60] | Zhang J, et al. Why gradient clipping accelerates training: A theoretical justification for adaptivity; 2019. p. 1–21. | 
		
				| [61] | Wilson AC, et al. The marginal value of adaptive gradient methods in machine learning. Adv Neural Inf Proces Syst. 2017;(Nips):4149–59. http://arxiv.org/abs/1705.08292. | 
		
				| [62] | Ruder S. An overview of gradient descent optimization algorithms. In:  arXiv preprint arXiv:160904747; 2016. p. 1–14. http://arxiv.org/abs/1609.04747. | 
		
				| [63] | Yao X. Evolving artificial neural networks. Proc IEEE. 1999;87(9):1423–47. https://doi.org/10.1109/5.784219. | 
		
				| [64] | F. P. Such et al., “Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning” (2017). | 
		
				| [65] | Conti E, et al. Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. Adv Neural Inf Proces Syst. 2018;(NeurIPS):5027–38. http://arxiv.org/abs/1712.06560. | 
		
				| [66] | Rere LMR, Fanany MI, Arymurthy AM. Simulated Annealing Algorithm for Deep Learning. Procedia Comput Sci. 2015;72:137–44. https://doi.org/10.1016/j.procs.2015.12.114. | 
		
				| [67] | Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7. https://doi.org/10.1126/science.1127647. | 
		
				| [68] | Wang H, Czerminski R, Jamieson AC. Neural Networks and Deep Learning. In:  The Machine Age of Customer Insight; 2021. p. 91–101. https://doi.org/10.1108/978-1-83909-694-520211010. | 
		
				| [69] | Mnih V, et al. Playing Atari with Deep Reinforcement Learning. In:  Deep Reinforcement Learning; 2013. p. 135–60. | 
		
				| [70] | Vlachas PR, et al. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics. Neural Netw. 2020;126:191–217. https://doi.org/10.1016/j.neunet.2020.02.016. | 
		
				| [71] | Pandey S, Schumacher J. Reservoir computing model of two-dimensional turbulent convection. Phys Rev Fluids. 2020;5(11):113506. https://doi.org/10.1103/PhysRevFluids.5.113506. | 
		
				| [72] | Vlachas PR, et al. Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks. (arXiv:1802.07486v4 [physics.comp-ph] UPDATED). Phys Today. 2018. https://doi.org/10.1098/rspa.2017.0844. | 
		
				| [73] | Salmela L, et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nat Machine Intell. 2021;3(4):344–54. https://doi.org/10.1038/s42256-021-00297-z. | 
		
				| [74] | Teğin U, et al. Reusability report: Predicting spatiotemporal nonlinear dynamics in multimode fibre optics with a recurrent neural network. Nat Machine Intell. 2021;3(5):387–91. https://doi.org/10.1038/s42256-021-00347-6. | 
		
				| [75] | Sui H, et al. Deep learning based pulse prediction of nonlinear dynamics in fiber optics. Opt Express. 2021;29(26):44080. https://doi.org/10.1364/oe.443279. | 
		
				| [76] | Lim J, Psaltis D. MaxwellNet: Physics-driven deep neural network training based on Maxwell’s equations. APL Photonics. 2022;7(1):011301. https://doi.org/10.1063/5.0071616. | 
		
				| [77] | Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications. Opt Express. 2019;27(17):24223. https://doi.org/10.1364/oe.27.024223. | 
		
				| [78] | Tünnermann H, Shirakawa A. Deep reinforcement learning for tiled aperture beam combining in a simulated environment. JPhys Photonics. 2021;3(1). https://doi.org/10.1088/2515-7647/abcd83. | 
		
				| [79] | Chen J, Jiang H. Optimal Design of Gain-Flattened Raman Fiber Amplifiers Using a Hybrid Approach Combining Randomized Neural Networks and Differential Evolution Algorithm. IEEE Photonics J. 2018;10(2). https://doi.org/10.1109/JPHOT.2018.2817843. | 
		
				| [80] | Hou T, et al. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation. Photonics Res. 2020;8(5):715. https://doi.org/10.1364/prj.388551. | 
		
				| [81] | Vincent P, et al. Stacked denoising autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J Mach Learn Res. 2010;11:3371–408. | 
		
				| [82] | Vincent P, et al. Extracting and composing robust features with denoising autoencoders. In:  Proceedings of the 25th International Conference on Machine Learning, vol. 311. New York: ACM Press; 2008. p. 1096–103. https://doi.org/10.1145/1390156.1390294. | 
		
				| [83] | An Y, et al. Suppressing the Influence of CCD Vertical Blooming on M2 Determination through Deep Learning. In:  2019 18th International Conference on Optical Communications and Networks, ICOCN 2019(1); 2019. p. 2–4. https://doi.org/10.1109/ICOCN.2019.8934887. | 
		
				| [84] | Mathew RS, et al. The Raspberry Pi auto-aligner: Machine learning for automated alignment of laser beams. Rev Sci Instrum. 2021;92(1). https://doi.org/10.1063/5.0032588. | 
		
				| [85] | Arismar Cerqueira S. Recent progress and novel applications of photonic crystal fibers. Rep Prog Phys. 2010;73(2):024401. https://doi.org/10.1088/0034-4885/73/2/024401. | 
		
				| [86] | Chugh S, et al. Machine learning approach for computing optical properties of a photonic crystal fiber. Opt Express. 2019;27(25):36414. https://doi.org/10.1364/oe.27.036414. | 
		
				| [87] | Zibar D, et al. Inverse System Design Using Machine Learning: The Raman Amplifier Case. J Lightwave Technol. 2020;38(4):736–53. https://doi.org/10.1109/JLT.2019.2952179. | 
		
				| [88] | Zhou J, et al. Robust, compact, and flexible neural model for a fiber Raman amplifier. J Lightwave Technol. 2006;24(6):2362–7. https://doi.org/10.1109/JLT.2006.874602. | 
		
				| [89] | Singh S, Kaler RS. Performance optimization of EDFA-Raman hybrid optical amplifier using genetic algorithm. Opt Laser Technol. 2015;68:89–95. https://doi.org/10.1016/j.optlastec.2014.10.011. | 
		
				| [90] | M. Ionescu, A. Ghazisaeidi, and J. Renaudier, “Machine Learning Assisted Hybrid EDFA-Raman Amplifier Design for C+L Bands,” 2020 European Conference on Optical Communications, ECOC 2020(1), 2020–2022. 2020. https://doi.org/10.1109/ECOC48923.2020.9333241. | 
		
				| [91] | Jiang X, et al. Solving the nonlinear Schrödinger equation in optical fibers using physics-informed neural network. In:  Optics InfoBase Conference Papers: OSA; 2021. p. 3–5. https://doi.org/10.1364/ofc.2021.m3h.8. | 
		
				| [92] | Teǧin U, et al. Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks. APL Photonics. 2020;5(3):030804. https://doi.org/10.1063/1.5138131. | 
		
				| [93] | Valensise CM, et al. Deep reinforcement learning control of white-light continuum generation. Optica. 2021;8(2):239. https://doi.org/10.1364/OPTICA.414634. | 
		
				| [94] | Su R, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt Lett. 2012;37(19):3978. https://doi.org/10.1364/ol.37.003978. | 
		
				| [95] | Su R, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers. Opt Lett. 2012;37(4):497. https://doi.org/10.1364/ol.37.000497. | 
		
				| [96] | Vu KT, et al. Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. Opt Express. 2006;14(23):10996. https://doi.org/10.1364/oe.14.010996. | 
		
				| [97] | Malinowski A, et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping. Opt Express. 2009;17(23):20927. https://doi.org/10.1364/oe.17.020927. | 
		
				| [98] | Malinowski A, et al. High peak power, high-energy, high-average power pulsed fibre laser system with versatile pulse duration and shape. Optics InfoBase Conf Pap. 2013;38(22):4686. https://doi.org/10.1364/ol.38.004686. | 
		
				| [99] | Schimpf DN, et al. Compensation of pulse-distortion in saturated laser amplifiers. Opt Express. 2008;16(22):17637. https://doi.org/10.1364/oe.16.017637. | 
		
				| [100] | Shi H, et al. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping. Appl Phys B Lasers Opt. 2016;122(10). https://doi.org/10.1007/s00340-016-6543-4. | 
		
				| [101] | Kutuzyan AA, et al. Dispersive regime of spectral compression. Quantum Electron. 2008;38(4):383–7. https://doi.org/10.1070/qe2008v038n04abeh013737. | 
		
				| [102] | Finot C, et al. Parabolic pulse generation and applications. In:  2nd IEEE LEOS Winter Topicals, WTM 2009 45(11); 2009. p. 110–1. https://doi.org/10.1109/LEOSWT.2009.4771681. | 
		
				| [103] | Boscolo S, Finot C. Artificial neural networks for nonlinear pulse shaping in optical fibers. Opt Laser Technol. 2020;131(February):106439. https://doi.org/10.1016/j.optlastec.2020.106439. | 
		
				| [104] | Boscolo S, Dudley JM, Finot C. Modelling self-similar parabolic pulses in optical fibres with a neural network. Results in Optics. 2021;3(November 2020):100066. https://doi.org/10.1016/j.rio.2021.100066. | 
		
				| [105] | Gupta RK, et al. Deep Learning Enabled Laser Speckle Wavemeter with a High Dynamic Range. Laser Photonics Rev. 2020;14(9):1–19. https://doi.org/10.1002/lpor.202000120. | 
		
				| [106] | Xiong W, et al. Deep learning of ultrafast pulses with a multimode fiber. APL Photonics. 2020;5(9). https://doi.org/10.1063/5.0007037. | 
		
				| [107] | Genty G, et al. Machine learning and applications in ultrafast photonics. Nat Photonics. 2021;15(2):91–101. https://doi.org/10.1038/s41566-020-00716-4. | 
		
				| [108] | Bendory T, Beinert R, Eldar YC. Fourier phase retrieval: Uniqueness and algorithms. Appl Numer Harmon Anal. 2017;(9783319698014):55–91. https://doi.org/10.1007/978-3-319-69802-1_2. | 
		
				| [109] | Escoto E, et al. Advanced phase retrieval for dispersion scan: a comparative study. J Opt Soc Am B. 2018;35(1):8. https://doi.org/10.1364/josab.35.000008. | 
		
				| [110] | Kane DJ. Principal components generalized projections: a review [Invited]. J Opt Soc Am B. 2008;25(6):A120. https://doi.org/10.1364/josab.25.00a120. | 
		
				| [111] | Sidorenko P, et al. Ptychographic reconstruction algorithm for FROG: Supreme robustness and super-resolution. In:  2016 Conference on Lasers and Electro-Optics, CLEO 2016 3(12); 2016. https://doi.org/10.1364/cleo_si.2016.stu4i.3. | 
		
				| [112] | Zahavy T, et al. Deep learning reconstruction of ultrashort pulses. Optica. 2018;5(5):666. https://doi.org/10.1364/OPTICA.5.000666. | 
		
				| [113] | Zhu Z, et al. Attosecond pulse retrieval from noisy streaking traces with conditional variational generative network. Sci Rep. 2020;10(1):1–7. https://doi.org/10.1038/s41598-020-62291-6. | 
		
				| [114] | White J, Chang Z. Attosecond streaking phase retrieval with neural network. Opt Express. 2019;27(4):4799. https://doi.org/10.1364/oe.27.004799. | 
		
				| [115] | Kokhanovskiy A, et al. Machine learning-based pulse characterization in figure-eight mode-locked lasers. Opt Lett. 2019;44(13):3410. https://doi.org/10.1364/ol.44.003410. | 
		
				| [116] | Bruning R, et al. Comparative analysis of numerical methods for the mode analysis of laser beams. Appl Opt. 2013;52(32):7769–77. https://doi.org/10.1364/AO.52.007769. | 
		
				| [117] | An Y, et al. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt Express. 2019;27(7):10127. https://doi.org/10.1364/oe.27.010127. | 
		
				| [118] | An Y, et al. Numerical mode decomposition for multimode fiber: From multi-variable optimization to deep learning. Opt Fiber Technol. 2019;52(June):101960. https://doi.org/10.1016/j.yofte.2019.101960. | 
		
				| [119] | An Y, et al. Deep Learning-Based Real-Time Mode Decomposition for Multimode Fibers. IEEE J Select Topics Quantum Electron. 2020;26(4):1–6. https://doi.org/10.1109/JSTQE.2020.2969511. | 
		
				| [120] | An Y, et al. Fast modal analysis for Hermite–Gaussian beams via deep learning. Appl Opt. 2020;59(7):1954. https://doi.org/10.1364/ao.377189. | 
		
				| [121] | Fan X, et al. Mitigating ambiguity by deep-learning-based modal decomposition method. Opt Commun. 2020;471(February):125845. https://doi.org/10.1016/j.optcom.2020.125845. | 
		
				| [122] | Rothe S, et al. Intensity-Only Mode Decomposition on Multimode Fibers Using a Densely Connected Convolutional Network. J Lightwave Technol. 2021;39(6):1672–9. https://doi.org/10.1109/JLT.2020.3041374. | 
		
				| [123] | Gao H, et al. Rapid Mode Decomposition of Few-Mode Fiber by Artificial Neural Network. J Lightwave Technol. 2021;39(19):6294–300. https://doi.org/10.1109/JLT.2021.3097501. | 
		
				| [124] | Scaggs M, Haas G. Real time laser beam analysis system for high power lasers. In:  Laser Resonators and Beam Control XIII 7913; 2011. p. 791306. https://doi.org/10.1117/12.871369. | 
		
				| [125] | Du Y, Fu Y, Zheng L. Complex amplitude reconstruction for dynamic beam quality M^2 factor measurement with self-referencing interferometer wavefront sensor. Appl Opt. 2016;55(36):10180. https://doi.org/10.1364/ao.55.010180. | 
		
				| [126] | Han Z-G, et al. Determination of the laser beam quality factor (M^2) by stitching quadriwave lateral shearing interferograms with different exposures. Appl Opt. 2017;56(27):7596. https://doi.org/10.1364/ao.56.007596. | 
		
				| [127] | Pan S, et al. Real-time complex amplitude reconstruction method for beam quality M^2 factor measurement. Opt Express. 2017;25(17):20142. https://doi.org/10.1364/oe.25.020142. | 
		
				| [128] | Yoda H, Polynkin P, Mansuripur M. Beam quality factor of higher order modes in a step-index fiber. J Lightwave Technol. 2006;24(3):1350–5. https://doi.org/10.1109/JLT.2005.863337. | 
		
				| [129] | Huang L, et al. Real-time mode decomposition for few-mode fiber based on numerical method. Opt Express. 2015;23(4):4620. https://doi.org/10.1364/oe.23.004620. | 
		
				| [130] | Flamm D, et al. Fast M2 measurement for fiber beams based on modal analysis. Appl Opt. 2012;51(7):987–93. https://doi.org/10.1364/AO.51.000987. | 
		
				| [131] | An Y, et al. Deep learning enabled superfast and accurate M 2 evaluation for fiber beams. Opt Express. 2019;27(13):18683. https://doi.org/10.1364/OE.27.018683. | 
		
				| [132] | Pu G, et al. Automatic mode-locking fiber lasers: progress and perspectives. Sci China Inf Sci. 2020;63(6):1–24. https://doi.org/10.1007/s11432-020-2883-0. | 
		
				| [133] | Pu G, et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica. 2019;6(3):362. https://doi.org/10.1364/optica.6.000362. | 
		
				| [134] | Brunton SL, Fu X, Kutz JN. Extremum-seeking control of a mode-locked laser. IEEE J Quantum Electron. 2013;49(10):852–61. https://doi.org/10.1109/JQE.2013.2280181. | 
		
				| [135] | Andral U, et al. Toward an autosetting mode-locked fiber laser cavity. J Opt Soc Am B. 2016;33(5):825. https://doi.org/10.1364/josab.33.000825. | 
		
				| [136] | Woodward RI, Kelleher EJR. Towards ‘smart lasers’: Self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci Rep. 2016;6(November):1–9. https://doi.org/10.1038/srep37616. | 
		
				| [137] | Andra U, et al. Fiber laser mode locked through an evolutionary algorithm. In:  Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015 2(April); 2015. p. 2–6. https://doi.org/10.1364/optica.2.000275. | 
		
				| [138] | Fu X, Brunton SL, Nathan Kutz J. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt Express. 2014;22(7):8585. https://doi.org/10.1364/oe.22.008585. | 
		
				| [139] | Brunton SL, Fu X, Kutz JN. Self-Tuning Fiber Lasers. IEEE J Select Topics Quantum Electron. 2014;20(5):464–71. https://doi.org/10.1109/JSTQE.2014.2336538. | 
		
				| [140] | Baumeister T, Brunton SL, Nathan Kutz J. Deep learning and model predictive control for self-tuning mode-locked lasers. J Opt Soc Am B. 2018;35(3):617. https://doi.org/10.1364/josab.35.000617. | 
		
				| [141] | Yan Q, et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photonics Res. 2021;9(8):1493. https://doi.org/10.1364/prj.428117. | 
		
				| [142] | Su R, et al. High Power Narrow-Linewidth Nanosecond Coherent Beam Combination. Ieee J Select Topics Quantum Electron. 2014;20(5):IEEE. | 
		
				| [143] | Chang H, et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Res. 2020;8(12):1943. https://doi.org/10.1364/prj.409788. | 
		
				| [144] | Goodno GD, et al. Active phase and polarization locking of a 14 kW fiber amplifier. Opt Lett. 2010;35(10):1542. https://doi.org/10.1364/ol.35.001542. | 
		
				| [145] | Goodno GD, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J Select Topics Quantum Electron. 2007;13(3):460–71. https://doi.org/10.1109/JSTQE.2007.896618. | 
		
				| [146] | Fsaifes I, et al. Coherent Beam combining of 37 femtosecond fiber amplifiers. In:  Optics InfoBase Conference Papers Part F140-(14); 2019. p. 20152. https://doi.org/10.1364/oe.394031. | 
		
				| [147] | Kabeya D, et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop. Opt Express. 2017;25(12):13816. https://doi.org/10.1364/oe.25.013816. | 
		
				| [148] | Du Q, et al. Deterministic stabilization of eight-way 2D diffractive beam combining using pattern recognition. Opt Lett. 2019;44(18):4554. https://doi.org/10.1364/ol.44.004554. | 
		
				| [149] | Ahn HK, Kong HJ. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements. Opt Express. 2015;23(9):12407. https://doi.org/10.1364/oe.23.012407. | 
		
				| [150] | Ahn HK, Kong HJ. Feasibility of cascaded multi-dithering technique for coherent addition of a large number of beam elements. Appl Opt. 2016;55(15):4101. https://doi.org/10.1364/ao.55.004101. | 
		
				| [151] | Ma Y, et al. Coherent beam combination with single frequency dithering technique. Opt Lett. 2010;35(9):1308. https://doi.org/10.1364/ol.35.001308. | 
		
				| [152] | Jiang M, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique. Appl Opt. 2017;56(15):4255. https://doi.org/10.1364/ao.56.004255. | 
		
				| [153] | Ma P, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array. Opt Laser Technol. 2021;140(October 2020):107016. https://doi.org/10.1016/j.optlastec.2021.107016. | 
		
				| [154] | Shpakovych M, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop. Opt Express. 2021;29(8):12307. https://doi.org/10.1364/oe.419232. | 
		
				| [155] | Zhang X, et al. Coherent beam combination based on Q-learning algorithm. Opt Commun. 2021;490(February):126930. https://doi.org/10.1016/j.optcom.2021.126930. | 
		
				| [156] | Hou T, et al. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane. Opt Express. 2019;27(4):4046. https://doi.org/10.1364/oe.27.004046. | 
		
				| [157] | Hou T, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems. High Power Laser Sci Eng. 2019;7:e59. https://doi.org/10.1017/hpl.2019.46. | 
		
				| [158] | Chen J, Wan C, Zhan Q. Engineering photonic angular momentum with structured light: a review. Adv Photonics. 2021;3(06):1–15. https://doi.org/10.1117/1.ap.3.6.064001. | 
		
				| [159] | Qiao Z, et al. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 2020;1(1):13. https://doi.org/10.1186/s43074-020-00013-x. | 
		
				| [160] | Chen Y, Cai Y. Optical coherence structure: A novel tool for light manipulation. Sci China Technol Sci. 2021. https://doi.org/10.1007/s11431-021-1966-6. | 
		
				| [161] | Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics. 2021;15(4):253–62. https://doi.org/10.1038/s41566-021-00780-4. | 
		
				| [162] | Chang Q, et al. Phase-locking System in Fiber Laser Array through Deep Learning with Diffusers. In:  2020 Asia Communications and Photonics Conference, ACP 2020 and International Conference on Information Photonics and Optical Communications, IPOC 2020 - Proceedings; 2020. p. 7–9. https://doi.org/10.1364/acpc.2020.m4a.96. | 
		
				| [163] | Liu R, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning. Chin Opt Lett. 2020;18(4):041402. https://doi.org/10.3788/col202018.041402. | 
		
				| [164] | Wang D, et al. Stabilization of the 81-channel coherent beam combination using machine learning. Opt Express. 2021;29(4):5694. https://doi.org/10.1364/oe.414985. | 
		
				| [165] | Abadi M, et al. TensorFlow: A system for large-scale machine learning. In:  Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016; 2016. p. 265–83. | 
		
				| [166] | Imambi S, Prakash KB, Kanagachidambaresan GR. PyTorch. 2021:87–104. https://doi.org/10.1007/978-3-030-57077-4_10. | 
		
				| [167] | Li K, Malik J. Learning to optimize. In:  5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings; 2017. | 
		
				| [168] | Andrychowicz M, et al. Learning to learn by gradient descent by gradient descent. In:  Advances in Neural Information Processing Systems(Nips); 2016. p. 3988–96. |