留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Richeng Lin, Yanming Zhu, Liang Chen, Wei Zheng, Mengxuan Xu, Jinlu Ruan, Renfu Li, Titao Li, Zhuogeng Lin, Lu Cheng, Ying Ding, Feng Huang, Xiaoping Ouyang. Ultrafast (600 ps) α-ray scintillators[J]. PhotoniX. doi: 10.1186/s43074-022-00054-4
Citation: Richeng Lin, Yanming Zhu, Liang Chen, Wei Zheng, Mengxuan Xu, Jinlu Ruan, Renfu Li, Titao Li, Zhuogeng Lin, Lu Cheng, Ying Ding, Feng Huang, Xiaoping Ouyang. Ultrafast (600 ps) α-ray scintillators[J]. PhotoniX. doi: 10.1186/s43074-022-00054-4

doi: 10.1186/s43074-022-00054-4

Ultrafast (600 ps) α-ray scintillators

Funds: This work was financially supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong (2021B1515020105), China Postdoctoral Science Foundation (No. 2021M693597, BX2021385).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Grüneboom A, Kling L, Christiansen S, Mill L, Maier A, Engelke K, Quick HH, Schett G, Gunzer M. Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol. 2019;15(9):533–49. https://doi.org/10.1038/s41584-019-0274-y.
    [2] Hachadorian RL, Bruza P, Jermyn M, Gladstone DJ, Pogue BW, Jarvis LA. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light. Nat Commun. 2020;11:2298. https://doi.org/10.1038/s41467-020-16031-z.
    [3] Lin R, Zheng W, Chen L, Zhu Y, Xu M, Ouyang X, Huang F. X-ray radiation excited ultralong (>20,000 seconds) intrinsic phosphorescence in aluminum nitride single-crystal scintillators. Nat Commun. 2020;11:4351. https://doi.org/10.1038/s41467-020-18221-1.
    [4] Blasse G. Scintillator materials. Chem Mater. 1994;6:1465–75. https://doi.org/10.1021/cm00045a002.
    [5] Rodnyi PA, Dorenbos P, Van Eijk CW. Energy loss in inorganic scintillators. Phys Stat Sol (b). 1995;187:15–29. https://doi.org/10.1002/pssb.2221870102.
    [6] Lin R, Guo Q, Zhu Q, Zhu Y, Zheng W, Huang F. All-Inorganic CsCu2I3 Single Crystal with High-PLQY (≈15.7%) Intrinsic White-Light Emission via Strongly Localized 1D Excitonic Recombination. Adv Mater. 2019;31–1905079. https://doi.org/10.1002/adma.201905079.
    [7] Zheng W, Huang F, Zheng R, Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ< 200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv Mater. 2015;27:3921–7.
    [8] Xu LJ, Lin X, He Q, Worku M, Ma B. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat Commun. 2020;11:4329. https://doi.org/10.1038/s41467-020-18119-y.
    [9] Cho S, Kim S, Kim J, Jo Y, Ryu I, Hong S, Lee JJ, Cha S, Nam EB, Lee SU, Noh SK, Sam K, Kim H, Kwak J, Im H. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light Sci Appl. 2020;9:156. https://doi.org/10.1038/s41377-020-00391-8.
    [10] Thirimanne HM, Jayawardena KDGI, Parnell AJ, Bandara RMI, Karalasingam A, Pani S, Huerdler JE, Lidzey DG, Tedde SF, Nisbet A, Mills CA, Silva SRP. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat Commun. 2018;9:2926. https://doi.org/10.1038/s41467-018-05301-6.
    [11] Zhao J, Zhao L, Deng Y, Xiao X, Ni Z, Xu S, Huang J. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat Photonics. 2020;14:612–7. https://doi.org/10.1038/s41566-020-0678-x.
    [12] Zhang Y, Liu Y, Xu Z, Ye H, Yang Z, You J, Liu M, He Y, Kanatzidis MG, Liu SF. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat Commun. 2020;11:2304. https://doi.org/10.1038/s41467-020-16034-w.
    [13] Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov AA, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh DBL, All AH, Mohammed OF, Bakr OM, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature. 2018;561:88–93.
    [14] Zhu W, Ma W, Su Y, Chen Z, Chen X, Ma Y, Bai L, Xiao W, Liu T, Zhu H, Liu X. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci Appl. 2020;9:112. https://doi.org/10.1038/s41377-020-00353-0.
    [15] Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F. High-Performance Graphene/β-Ga2O3 Heterojunction Deep-Ultraviolet Photodetector with Hot-Electron Excited Carrier Multiplication. ACS Appl Mater Interfaces. 2018;10:22419–26.
    [16] Xu M, Chen L, Yao Z, Ren S, Zhang Y, Huang F, Ji X, He C, Zhou L, Hu J, He S, Zhao K, Ouyang X. Transient Radiation Imaging Based on a ZnO: Ga Single-Crystal Image Converter. Sci Rep. 2018;8:4178. https://doi.org/10.1038/s41598-018-22615-z.
    [17] Simpson PJ, Tjossem R, Hunt AW, Lynn KG, Munné V. Superfast timing performance from ZnO scintillators. Nucl Instrum Methods Phys Res, Sect A. 2003;505:82–4. https://doi.org/10.1016/S0168-9002(03)01025-8.
    [18] Yamanoi K, Sakai K, Nakazato T, Estacio E, Shimizu T, Sarukura N, Ehrentraut D, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Yabashi M, Kimura H, Ohashi H, Ishikawa T. Response-time improved hydrothermal-method-grown ZnO scintillator for XFEL timing-observation. Opt Mater. 2010;32:1305–8. https://doi.org/10.1016/j.optmat.2010.04.039.
    [19] Shimizu T, Yamamoi K, Estacio E, Nakazato T, Sakai K, Sarukura N, Ehrentraut D, Fukuda T, Nagasono M, Togashi T, Higashiya A, Yabashi M, Ishikawa T, Ohashi H, Kimura H. Response-time improved hydrothermal-method-grown ZnO scintillator for soft x-ray free-electron laser timing-observation. Rev Sci Instrum.2010;81:033102. https://doi.org/10.1063/1.3310276.
    [20] Armelao L, Heigl F, Jürgensen A, Blyth RIR, Regier T, Zhou XT, Sham TK. X-ray excited optical luminescence studies of ZnO and Eu-Doped ZnO Nanostructures. J Phys Chem C. 2007;111:10194–200. https://doi.org/10.1021/jp071379f.
    [21] Jia L, Zheng W, Huang F. Vacuum-ultraviolet photodetectors PhotoniX. 2020;1:22. https://doi.org/10.1186/s43074-020-00022-w.
    [22] Li Y, Zheng W, Huang F. All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX. 2020;1:15. https://doi.org/10.1186/s43074-020-00014-w.
    [23] Zheng W, Lin R, Ran J, Zhang Z, Ji X, Huang F. Vacuum-ultraviolet photovoltaic detector. ACS Nano. 2018;12:425–31.
    [24] Shin HH, Joung YH, Kang SJ. Influence of the substrate temperature on the optical and electrical properties of Ga-doped ZnO thin films fabricated by pulsed laser deposition. J Mater Sci: Mater Electron. 2008;20:704. https://doi.org/10.1007/s10854-008-9788-9.
    [25] Khranovskyy V, Grossner U, Nilsen O, Lazorenko V, Lashkarev GV, Svensson BG, Yakimova R. Structural and morphological properties of ZnO: Ga thin films. Thin Solid Films. 2006;515:472–6. https://doi.org/10.1016/j.tsf.2005.12.269.
    [26] Cheng L, Zheng W, Zhu Y, Huang F, Wang H, Ouyang X. Anomalous blue shift of exciton luminescence in diamond. Nano Lett. 2022. https://doi.org/10.1021/acs.nanolett.1c04519.
    [27] Zhou M, Zhu H, Jiao Y, Rao Y, Hark S, Liu Y, Peng L, Li Q. Optical and Electrical Properties of Ga-Doped ZnO Nanowire Arrays on Conducting Substrates. J Phys Chem C. 2009;113:8945–7. https://doi.org/10.1021/jp901025a.
    [28] Chen L, He SY, Zhou LD, Huang F, Hu J, Ruan JL, Xu MX, Zhang ZB, Liu JL, Ouyang XP, Liu B. The dependence of fluorescent decay time of ZnO: Ga crystal on instantaneous non-equilibrium carriers induced by charged particles. J Lumin. 2019;214:116520. https://doi.org/10.1016/j.jlumin.2019.116520.
    [29] Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X. Comparative study on fluorescence decay time of doped ZnO crystals under α and β excitation. Nuc Instrum Methods Phys Res Sect A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019;933:71–4. https://doi.org/10.1016/j.nima.2019.04.095.
    [30] Sakai E. Recent measurements on scintillator-photodetector systems. IEEE Trans Nucl Sci. 1987;34:418–22. https://doi.org/10.1109/TNS.1987.4337375.
    [31] Laval M, Moszyński M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J. Barium fluoride — Inorganic scintillator for subnanosecond timing. Nucl Instrum Methods Phys Res. 1983;206:169–76. https://doi.org/10.1016/0167-5087(83)91254-1.
    [32] van Loef EVD, Dorenbos P, van Eijk CWE, Krämer K, Güdel HU. High-energy-resolution scintillator: Ce3+ activated LaCl3. Appl Phys Lett. 2000;77:1467–8. https://doi.org/10.1063/1.1308053.
    [33] Moszynski M, Kapusta M, Wolski D, Szawlowski M, Klamra W. Energy resolution of scintillation detectors readout with large area avalanche photodiodes and photomultipliers. IEEE Trans Nucl Sci. 1998;45:472–7. https://doi.org/10.1109/23.682429.
    [34] Yanagida T, Fujimoto Y, Yoshikawa A, Yokota Y, Miyamoto M, Sekiwa H, Kobayashi J, Tokutake T, Kamada K, Maeo S. Scintillation Properties of In Doped ZnO With Different In Concentrations. IEEE Trans Nucl Sci. 2010;57:1325–8. https://doi.org/10.1109/TNS.2009.2035120.
    [35] Yanagida T, Fujimoto Y, Miyamoto M, Sekiwa H. Optical and scintillation properties of Cd-doped ZnO film. Jpn J Appl Phys. 2014;53:02bc13. https://doi.org/10.7567/jjap.53.02bc13.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-02
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回