| [1] | Siegel PH. Terahertz technology. IEEE Trans Microw Theory Tech. 2002;50(3):910–28. | 
		
				| [2] | Dragoman D, Dragoman M. Terahertz fields and applications. Prog Quantum Electron. 2004;28(1):1–66. | 
		
				| [3] | Tonouchi M. Cutting-edge terahertz technology. Nat Photonics. 2007;1(2):97–105. | 
		
				| [4] | Pickwell E, Wallace VP. Biomedical applications of terahertz technology. J Phys D Appl Phys. 2006;39(17):R301. | 
		
				| [5] | Fan S, He Y, Ung BS, et al. The growth of biomedical terahertz research. J Phys D Appl Phys. 2014;47(37):374009. | 
		
				| [6] | Beard MC, Turner GM, Schmuttenmaer CA. Terahertz spectroscopy. J Phys Chem B. 2002;106(29):7146–59. | 
		
				| [7] | Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications. Laser Photon Rev. 2011;5(1):124–66. | 
		
				| [8] | Debus C, Bolivar PH. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett. 2007;91(18):184102. | 
		
				| [9] | Beruete M, Jáuregui-López I. Terahertz sensing based on metasurfaces. Adv Opt Mater. 2020;8(3):1900721. | 
		
				| [10] | Mittleman DM. Twenty years of terahertz imaging. Opt Express. 2018;26(8):9417–31. | 
		
				| [11] | Tzydynzhapov G, Gusikhin P, Muravev V, et al. New real-time sub-terahertz security body scanner. J Infrared Millim Terahertz Waves. 2020;41(6):632–41. | 
		
				| [12] | Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics. 2016;10(6):371–9. | 
		
				| [13] | Yang Y, Yamagami Y, Yu X, et al. Terahertz topological photonics for on-chip communication. Nat Photonics. 2020;14(7):446–51. | 
		
				| [14] | Sengupta K, Nagatsuma T, Mittleman DM. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron. 2018;1(12):622–35. | 
		
				| [15] | Degl’Innocenti R, Kindness SJ, Beere HE, et al. All-integrated terahertz modulators. Nanophotonics. 2018;7(1):127–44. | 
		
				| [16] | Cong L, Han J, Zhang W, et al. Temporal loss boundary engineered photonic cavity. Nat Commun. 2021;12(1):1–8. | 
		
				| [17] | Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7. | 
		
				| [18] | Huang L, Chen X, Muhlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012;12(11):5750–5. | 
		
				| [19] | Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater. 2013;25(33):4567–72. | 
		
				| [20] | Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater. 2014;26(29):5031–6. | 
		
				| [21] | Papakostas A, Potts A, Bagnall DM, et al. Optical manifestations of planar chirality. Phys Rev Lett. 2003;90(10):107404. | 
		
				| [22] | Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 2013;340(6138):1304–7. | 
		
				| [23] | Wang Q, Plum E, Yang Q, et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci Appl. 2018;7(1):1–9. | 
		
				| [24] | Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun. 2016;7(1):1–7. | 
		
				| [25] | Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics. 2018;7(6):1169–90. | 
		
				| [26] | Ma Q, et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl. 2019;8(1):98. | 
		
				| [27] | Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX. 2020;1(1):1–32. | 
		
				| [28] | Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3(1):1–6. | 
		
				| [29] | Wang Q, Zhang X, Xu Y, et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater. 2015;3(6):779–85. | 
		
				| [30] | Xu Y, Li Q, Zhang X, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics. 2019;6(11):2933–41. | 
		
				| [31] | Cong L, Srivastava YK, Zhang H, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci Appl. 2018;7:28. | 
		
				| [32] | Xu Y, Zhang H, Li Q, et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics. 2020;9(10):3393–402. | 
		
				| [33] | Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun. 2013;4(1):1–6. | 
		
				| [34] | Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control. Adv Mater. 2015;27(44):7123–9. | 
		
				| [35] | Xu Q, Zhang X, Wei M, et al. Efficient metacoupler for complex surface plasmon launching. Adv Opt Mater. 2018;6(5):1701117. | 
		
				| [36] | Wang L, Lin XW, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl. 2015;4(2):e253. | 
		
				| [37] | Shrekenhamer D, Chen WC, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett. 2013;110(17):177403. | 
		
				| [38] | Chen HT, Padilla WJ, Zide JMO, et al. Active terahertz metamaterial devices. Nature. 2006;444(7119):597–600. | 
		
				| [39] | Zhou J, Chowdhury DR, Zhao R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B. 2012;86(3):035448. | 
		
				| [40] | Pitchappa P, Manjappa M, Ho CP, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater. 2016;4(4):541–7. | 
		
				| [41] | Cong L, Pitchappa P, Lee C, et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater. 2017;29(26):1700733. | 
		
				| [42] | Manjappa M, Pitchappa P, Wang N, et al. Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv Opt Mater. 2018;6(16):1800141. | 
		
				| [43] | Cong L, Pitchappa P, Wu Y, et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms. Adv Opt Mater. 2017;5(2):1600716. | 
		
				| [44] | Lee SH, Choi M, Kim TT, et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 2012;11(11):936–41. | 
		
				| [45] | Li Q, Tian Z, Zhang X, et al. Active graphene–silicon hybrid diode for terahertz waves. Nat Commun. 2015;6(1):1–6. | 
		
				| [46] | Liu M, Plum E, Li H, et al. Switchable chiral mirrors. Adv. Opt Mater. 2020;8:15. | 
		
				| [47] | Pitchappa P, Kumar A, Prakash S, et al. Chalcogenide phase change material for active terahertz photonics. Adv Mater. 2019;31(12):1808157. | 
		
				| [48] | Makino K, Kato K, Saito Y, et al. Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change materials for photonics applications. J Mater Chem C Mater. 2019;7(27):8209–15. | 
		
				| [49] | Pitchappa P, Kumar A, Prakash S, et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices. Adv Funct Mater. 2021;31(17):2100200. | 
		
				| [50] | Cong L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater. 2020;32(28):2001418. | 
		
				| [51] | Dong W, Qiu Y, Zhou X, et al. Tunable mid-infrared phase-change metasurface. Adv Opt Mater. 2018;6(14):1701346. | 
		
				| [52] | Cao T, Zhang X, Dong W, et al. Tuneable thermal emission using chalcogenide metasurface. Adv Opt Mater. 2018;6(16):1800169. | 
		
				| [53] | Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics. 2015;9(11):725–32. | 
		
				| [54] | Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv. 2019;5(11):eaaw2687. | 
		
				| [55] | Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons. Nat Nanotechnol. 2016;11(8):693–9. | 
		
				| [56] | Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus. Nat Commun. 2017;8(1):1–8. | 
		
				| [57] | Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature. 2014;511(7508):206–11. | 
		
				| [58] | de Galarreta CR, Sinev I, Alexeev AM, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica. 2020;7(5):476–84. | 
		
				| [59] | Lin QW, Wong H, Huitema L, et al. Coding Metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations. Adv Opt Mater. 2021;10(1):2101699. | 
		
				| [60] | Su X, Ouyang C, Xu N, et al. Active metasurface terahertz deflector with phase discontinuities. Opt Express. 2015;23(21):27152–8. | 
		
				| [61] | Bitzer A, Ortner A, Merbold H, et al. Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle. Opt Express. 2011;19(3):2537–45. |