留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, Zhen Tian. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX. doi: 10.1186/s43074-022-00053-5
Citation: Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, Zhen Tian. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX. doi: 10.1186/s43074-022-00053-5

doi: 10.1186/s43074-022-00053-5

Nonvolatile reconfigurable terahertz wave modulator

Funds: This work was supported by the National Key Research and Development Program of China (2017YFA0701004, 2019YFA0709100, 2020YFA0714504), Tianjin Municipal Fund for Distinguished Young Scholars (Grant No. 20JCJQJC00190), and Key Fund of Shenzhen Natural Science Foundation (Grant No. JCYJ20200109150212515).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Siegel PH. Terahertz technology. IEEE Trans Microw Theory Tech. 2002;50(3):910–28.
    [2] Dragoman D, Dragoman M. Terahertz fields and applications. Prog Quantum Electron. 2004;28(1):1–66.
    [3] Tonouchi M. Cutting-edge terahertz technology. Nat Photonics. 2007;1(2):97–105.
    [4] Pickwell E, Wallace VP. Biomedical applications of terahertz technology. J Phys D Appl Phys. 2006;39(17):R301.
    [5] Fan S, He Y, Ung BS, et al. The growth of biomedical terahertz research. J Phys D Appl Phys. 2014;47(37):374009.
    [6] Beard MC, Turner GM, Schmuttenmaer CA. Terahertz spectroscopy. J Phys Chem B. 2002;106(29):7146–59.
    [7] Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications. Laser Photon Rev. 2011;5(1):124–66.
    [8] Debus C, Bolivar PH. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett. 2007;91(18):184102.
    [9] Beruete M, Jáuregui-López I. Terahertz sensing based on metasurfaces. Adv Opt Mater. 2020;8(3):1900721.
    [10] Mittleman DM. Twenty years of terahertz imaging. Opt Express. 2018;26(8):9417–31.
    [11] Tzydynzhapov G, Gusikhin P, Muravev V, et al. New real-time sub-terahertz security body scanner. J Infrared Millim Terahertz Waves. 2020;41(6):632–41.
    [12] Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics. 2016;10(6):371–9.
    [13] Yang Y, Yamagami Y, Yu X, et al. Terahertz topological photonics for on-chip communication. Nat Photonics. 2020;14(7):446–51.
    [14] Sengupta K, Nagatsuma T, Mittleman DM. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron. 2018;1(12):622–35.
    [15] Degl’Innocenti R, Kindness SJ, Beere HE, et al. All-integrated terahertz modulators. Nanophotonics. 2018;7(1):127–44.
    [16] Cong L, Han J, Zhang W, et al. Temporal loss boundary engineered photonic cavity. Nat Commun. 2021;12(1):1–8.
    [17] Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7.
    [18] Huang L, Chen X, Muhlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012;12(11):5750–5.
    [19] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater. 2013;25(33):4567–72.
    [20] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater. 2014;26(29):5031–6.
    [21] Papakostas A, Potts A, Bagnall DM, et al. Optical manifestations of planar chirality. Phys Rev Lett. 2003;90(10):107404.
    [22] Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 2013;340(6138):1304–7.
    [23] Wang Q, Plum E, Yang Q, et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci Appl. 2018;7(1):1–9.
    [24] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun. 2016;7(1):1–7.
    [25] Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics. 2018;7(6):1169–90.
    [26] Ma Q, et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl. 2019;8(1):98.
    [27] Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX. 2020;1(1):1–32.
    [28] Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3(1):1–6.
    [29] Wang Q, Zhang X, Xu Y, et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater. 2015;3(6):779–85.
    [30] Xu Y, Li Q, Zhang X, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics. 2019;6(11):2933–41.
    [31] Cong L, Srivastava YK, Zhang H, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci Appl. 2018;7:28.
    [32] Xu Y, Zhang H, Li Q, et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics. 2020;9(10):3393–402.
    [33] Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun. 2013;4(1):1–6.
    [34] Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control. Adv Mater. 2015;27(44):7123–9.
    [35] Xu Q, Zhang X, Wei M, et al. Efficient metacoupler for complex surface plasmon launching. Adv Opt Mater. 2018;6(5):1701117.
    [36] Wang L, Lin XW, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl. 2015;4(2):e253.
    [37] Shrekenhamer D, Chen WC, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett. 2013;110(17):177403.
    [38] Chen HT, Padilla WJ, Zide JMO, et al. Active terahertz metamaterial devices. Nature. 2006;444(7119):597–600.
    [39] Zhou J, Chowdhury DR, Zhao R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B. 2012;86(3):035448.
    [40] Pitchappa P, Manjappa M, Ho CP, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater. 2016;4(4):541–7.
    [41] Cong L, Pitchappa P, Lee C, et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater. 2017;29(26):1700733.
    [42] Manjappa M, Pitchappa P, Wang N, et al. Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv Opt Mater. 2018;6(16):1800141.
    [43] Cong L, Pitchappa P, Wu Y, et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms. Adv Opt Mater. 2017;5(2):1600716.
    [44] Lee SH, Choi M, Kim TT, et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 2012;11(11):936–41.
    [45] Li Q, Tian Z, Zhang X, et al. Active graphene–silicon hybrid diode for terahertz waves. Nat Commun. 2015;6(1):1–6.
    [46] Liu M, Plum E, Li H, et al. Switchable chiral mirrors. Adv. Opt Mater. 2020;8:15.
    [47] Pitchappa P, Kumar A, Prakash S, et al. Chalcogenide phase change material for active terahertz photonics. Adv Mater. 2019;31(12):1808157.
    [48] Makino K, Kato K, Saito Y, et al. Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change materials for photonics applications. J Mater Chem C Mater. 2019;7(27):8209–15.
    [49] Pitchappa P, Kumar A, Prakash S, et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices. Adv Funct Mater. 2021;31(17):2100200.
    [50] Cong L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater. 2020;32(28):2001418.
    [51] Dong W, Qiu Y, Zhou X, et al. Tunable mid-infrared phase-change metasurface. Adv Opt Mater. 2018;6(14):1701346.
    [52] Cao T, Zhang X, Dong W, et al. Tuneable thermal emission using chalcogenide metasurface. Adv Opt Mater. 2018;6(16):1800169.
    [53] Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics. 2015;9(11):725–32.
    [54] Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv. 2019;5(11):eaaw2687.
    [55] Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons. Nat Nanotechnol. 2016;11(8):693–9.
    [56] Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus. Nat Commun. 2017;8(1):1–8.
    [57] Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature. 2014;511(7508):206–11.
    [58] de Galarreta CR, Sinev I, Alexeev AM, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica. 2020;7(5):476–84.
    [59] Lin QW, Wong H, Huitema L, et al. Coding Metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations. Adv Opt Mater. 2021;10(1):2101699.
    [60] Su X, Ouyang C, Xu N, et al. Active metasurface terahertz deflector with phase discontinuities. Opt Express. 2015;23(21):27152–8.
    [61] Bitzer A, Ortner A, Merbold H, et al. Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle. Opt Express. 2011;19(3):2537–45.
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 录用日期:  2022-03-09
  • 网络出版日期:  2022-03-17

目录

    /

    返回文章
    返回