留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Xue-Qing Liu, Yong-Lai Zhang, Qian-Kun Li, Jia-Xin Zheng, Yi-Ming Lu, Saulius Juodkazis, Qi-Dai Chen, Hong-Bo Sun. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX. doi: 10.1186/s43074-022-00047-3
Citation: Xue-Qing Liu, Yong-Lai Zhang, Qian-Kun Li, Jia-Xin Zheng, Yi-Ming Lu, Saulius Juodkazis, Qi-Dai Chen, Hong-Bo Sun. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX. doi: 10.1186/s43074-022-00047-3

doi: 10.1186/s43074-022-00047-3

Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing

Funds: This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 61825502, 61960206003, 61935008 and 62105117) and the Scientific Research Project of the Education Department of Jilin Province (JJKH20221005KJ).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Sakakura M, Lei Y, Wang L, Yu YH, Kazansky PG. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci. Appl. 2020;9:15.
    [2] Gissibl T, Schmid M, Giessen H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica. 2016;3(4):448–51.
    [3] Liu X-Q, Yu L, Yang S-N, Chen Q-D, Wang L, Juodkazis S, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272.
    [4] Yan L, Yang D, Gong Q, Li Y. Rapid fabrication of continuous surface Fresnel microlens array by femtosecond laser focal field engineering. Micromachines. 2020;11(2):112.
    [5] Wang H, Zhang Y-L, Han D-D, Wang W, Sun H-B. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation. PhotoniX. 2021;2(1):1–13.
    [6] Jiang L, Wang AD, Li B, Cui TH, Lu YF. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl. 2018;7(2):17134.
    [7] Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R, Matsuo S, et al. Control over the crystalline state of sapphire. Adv. Mater. 2006;18(11):1361–4.
    [8] Li Z-Z, Wang L, Fan H, Yu Y-H, Sun H-B, Juodkazis S, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 2020;9(1):1–7.
    [9] Xu SZ, Sun K, Yao CZ, Liu H, Miao XX, Jiang YL, et al. Periodic surface structures on dielectrics upon femtosecond laser pulses irradiation. Opt. Express. 2019;27(6):8983–93.
    [10] Wang L, Xu B-B, Cao X-W, Li Q-K, Tian W-J, Chen Q-D, et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica. 2017;4(6):637–42.
    [11] Li X, Guan Y. Theoretical fundamentals of short pulse laser–metal interaction: A review. Nanotechnol Precis Eng. 2020;3(3):105–25.
    [12] Hu Y, Rao S, Wu S, Wei P, Qiu W, Wu D, et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv. Opt. Mater. 2018;6(9):1701299.
    [13] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Sci Appl. 2014;3(4):e149.
    [14] Liu X-Q, Chen Q-D, Guan K-M, Ma Z-C, Yu Y-H, Li Q-K, et al. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev. 2017;11(3):1600115.
    [15] Liu X-Q, Yang S-N, Yu L, Chen Q-D, Zhang Y-L, Sun H-B. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv. Funct. Mater. 2019;29(18):1900037.
    [16] Deng Z, Chen F, Yang Q, Bian H, Du G, Yong J, et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv. Funct. Mater. 2016;26(12):1995–2001.
    [17] Wang C, Yang L, Zhang C, Rao S, Wang Y, Wu S, et al. Multilayered skyscraper microchips fabricated by hybrid “all-in-one” femtosecond laser processing. Microsyst. Nanoeng. 2019;5(1):1–10.
    [18] Lapointe J, Bérubé JP, Ledemi Y, Dupont A, Fortin V, Messaddeq Y, et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl. 2020;9(1):1–12.
    [19] Lin J, Yu S, Ma Y, Fang W, He F, Qiao L, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt. Express. 2012;20(9):10212–7.
    [20] Bérubé J-P, Vallée R. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass. Opt. Lett. 2016;41(13):3074–7.
    [21] Bérubé J-P, Frayssinous C, Lapointe J, Dupont A, Vallée R. Direct inscription of near-surface waveguides in crystals, glasses, and polymers (Conference Presentation), Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XX. Int Soc Optics Photonics. 2020;11270:112700R.
    [22] Schubert M, Tiwald TE, Herzinger CM. Infrared dielectric anisotropy and phonon modes of sapphire. Phys Rev B. 2000;61(12):8187.
    [23] Harris DC, Johnson LF, Seaver R, Lewis T, Turri G, Bass M, et al. Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 μm wavelengths and comparison with sapphire. Opt Eng. 2013;52(8):087113.
    [24] Clapham PB, Hutley MC. Reduction of lens reflexion by the “Moth Eye” principle. Nature. 1973;244(5414):281–2.
    [25] Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003;424(6950):852–5.
    [26] Zhang G, Zhang J, Xie G, Liu Z, Shao H. Cicada wings: a stamp from nature for nanoimprint lithography. Small. 2006;2(12):1440–3.
    [27] Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotec. 2007;2(12):770–4.
    [28] Min WL, Jiang B, Jiang P. Bioinspired self-cleaning antireflection coatings. Adv Mater. 2008;20(20):3914–8.
    [29] Rahman A, Ashraf A, Xin H, Tong X, Sutter P, Eisaman MD, et al. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat Commun. 2015;6(1):1–6.
    [30] Wang L, Xu B-B, Chen Q-D, Ma Z-C, Zhang R, Liu Q-X, et al. Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces. Opt Lett. 2011;36(17):3305–7.
    [31] Sun CH, Min WL, Linn NC, Jiang P, Jiang B. Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl Phys Lett. 2007;91(23):231105.
    [32] Zhao Y, Wang J, Mao G. Colloidal subwavelength nanostructures for antireflection optical coatings. Opt Lett. 2005;30(14):1885–7.
    [33] Wang S, Yu XZ, Fan HT. Simple lithographic approach for subwavelength structure antireflection. Appl Phys Lett. 2007;91(6):061105.
    [34] Liao Y, Pan W, Cui Y, Qiao L, Bellouard Y, Sugioka K, et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt Lett. 2015;40(15):3623–6.
    [35] Li X, Hu XK, Li YF, Chai L. A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating. J Lightwave Technol. 2013;32(8):1463–71.
    [36] Mazilu M, Juodkazis S, Ebisui T, Matsuo S, Misawa H. Structural characterization of shock-affected sapphire. Applied Physics A. 2007;86(2):197–200.
    [37] Hörstmann-Jungemann M, Gottmann J, Keggenhoff M. 3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching. J Laser Micro/Nanoengineering. 2010;5(2):145–9.
    [38] Liu H, Li Y, Lin W, Hong M. High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Optics Laser Technology. 2020;132:106472.
    [39] Raguin DH, Morris GM. Antireflection structured surfaces for the infrared spectral region. Appl Opt. 1993;32(7):1154–67.
    [40] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, et al. Imaging based on metalenses. PhotoniX. 2020;1(1):1–24.
    [41] Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX. 2020;1(1):1–12.
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2021-12-31
  • 网络出版日期:  2022-01-21

目录

    /

    返回文章
    返回