| [1] | Sakakura M, Lei Y, Wang L, Yu YH, Kazansky PG. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci. Appl. 2020;9:15. | 
		
				| [2] | Gissibl T, Schmid M, Giessen H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica. 2016;3(4):448–51. | 
		
				| [3] | Liu X-Q, Yu L, Yang S-N, Chen Q-D, Wang L, Juodkazis S, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272. | 
		
				| [4] | Yan L, Yang D, Gong Q, Li Y. Rapid fabrication of continuous surface Fresnel microlens array by femtosecond laser focal field engineering. Micromachines. 2020;11(2):112. | 
		
				| [5] | Wang H, Zhang Y-L, Han D-D, Wang W, Sun H-B. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation. PhotoniX. 2021;2(1):1–13. | 
		
				| [6] | Jiang L, Wang AD, Li B, Cui TH, Lu YF. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl. 2018;7(2):17134. | 
		
				| [7] | Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R, Matsuo S, et al. Control over the crystalline state of sapphire. Adv. Mater. 2006;18(11):1361–4. | 
		
				| [8] | Li Z-Z, Wang L, Fan H, Yu Y-H, Sun H-B, Juodkazis S, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl. 2020;9(1):1–7. | 
		
				| [9] | Xu SZ, Sun K, Yao CZ, Liu H, Miao XX, Jiang YL, et al. Periodic surface structures on dielectrics upon femtosecond laser pulses irradiation. Opt. Express. 2019;27(6):8983–93. | 
		
				| [10] | Wang L, Xu B-B, Cao X-W, Li Q-K, Tian W-J, Chen Q-D, et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica. 2017;4(6):637–42. | 
		
				| [11] | Li X, Guan Y. Theoretical fundamentals of short pulse laser–metal interaction: A review. Nanotechnol Precis Eng. 2020;3(3):105–25. | 
		
				| [12] | Hu Y, Rao S, Wu S, Wei P, Qiu W, Wu D, et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv. Opt. Mater. 2018;6(9):1701299. | 
		
				| [13] | Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Sci Appl. 2014;3(4):e149. | 
		
				| [14] | Liu X-Q, Chen Q-D, Guan K-M, Ma Z-C, Yu Y-H, Li Q-K, et al. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev. 2017;11(3):1600115. | 
		
				| [15] | Liu X-Q, Yang S-N, Yu L, Chen Q-D, Zhang Y-L, Sun H-B. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv. Funct. Mater. 2019;29(18):1900037. | 
		
				| [16] | Deng Z, Chen F, Yang Q, Bian H, Du G, Yong J, et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv. Funct. Mater. 2016;26(12):1995–2001. | 
		
				| [17] | Wang C, Yang L, Zhang C, Rao S, Wang Y, Wu S, et al. Multilayered skyscraper microchips fabricated by hybrid “all-in-one” femtosecond laser processing. Microsyst. Nanoeng. 2019;5(1):1–10. | 
		
				| [18] | Lapointe J, Bérubé JP, Ledemi Y, Dupont A, Fortin V, Messaddeq Y, et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl. 2020;9(1):1–12. | 
		
				| [19] | Lin J, Yu S, Ma Y, Fang W, He F, Qiao L, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt. Express. 2012;20(9):10212–7. | 
		
				| [20] | Bérubé J-P, Vallée R. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass. Opt. Lett. 2016;41(13):3074–7. | 
		
				| [21] | Bérubé J-P, Frayssinous C, Lapointe J, Dupont A, Vallée R. Direct inscription of near-surface waveguides in crystals, glasses, and polymers (Conference Presentation), Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XX. Int Soc Optics Photonics. 2020;11270:112700R. | 
		
				| [22] | Schubert M, Tiwald TE, Herzinger CM. Infrared dielectric anisotropy and phonon modes of sapphire. Phys Rev B. 2000;61(12):8187. | 
		
				| [23] | Harris DC, Johnson LF, Seaver R, Lewis T, Turri G, Bass M, et al. Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 μm wavelengths and comparison with sapphire. Opt Eng. 2013;52(8):087113. | 
		
				| [24] | Clapham PB, Hutley MC. Reduction of lens reflexion by the “Moth Eye” principle. Nature. 1973;244(5414):281–2. | 
		
				| [25] | Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003;424(6950):852–5. | 
		
				| [26] | Zhang G, Zhang J, Xie G, Liu Z, Shao H. Cicada wings: a stamp from nature for nanoimprint lithography. Small. 2006;2(12):1440–3. | 
		
				| [27] | Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotec. 2007;2(12):770–4. | 
		
				| [28] | Min WL, Jiang B, Jiang P. Bioinspired self-cleaning antireflection coatings. Adv Mater. 2008;20(20):3914–8. | 
		
				| [29] | Rahman A, Ashraf A, Xin H, Tong X, Sutter P, Eisaman MD, et al. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat Commun. 2015;6(1):1–6. | 
		
				| [30] | Wang L, Xu B-B, Chen Q-D, Ma Z-C, Zhang R, Liu Q-X, et al. Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces. Opt Lett. 2011;36(17):3305–7. | 
		
				| [31] | Sun CH, Min WL, Linn NC, Jiang P, Jiang B. Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl Phys Lett. 2007;91(23):231105. | 
		
				| [32] | Zhao Y, Wang J, Mao G. Colloidal subwavelength nanostructures for antireflection optical coatings. Opt Lett. 2005;30(14):1885–7. | 
		
				| [33] | Wang S, Yu XZ, Fan HT. Simple lithographic approach for subwavelength structure antireflection. Appl Phys Lett. 2007;91(6):061105. | 
		
				| [34] | Liao Y, Pan W, Cui Y, Qiao L, Bellouard Y, Sugioka K, et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt Lett. 2015;40(15):3623–6. | 
		
				| [35] | Li X, Hu XK, Li YF, Chai L. A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating. J Lightwave Technol. 2013;32(8):1463–71. | 
		
				| [36] | Mazilu M, Juodkazis S, Ebisui T, Matsuo S, Misawa H. Structural characterization of shock-affected sapphire. Applied Physics A. 2007;86(2):197–200. | 
		
				| [37] | Hörstmann-Jungemann M, Gottmann J, Keggenhoff M. 3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching. J Laser Micro/Nanoengineering. 2010;5(2):145–9. | 
		
				| [38] | Liu H, Li Y, Lin W, Hong M. High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Optics Laser Technology. 2020;132:106472. | 
		
				| [39] | Raguin DH, Morris GM. Antireflection structured surfaces for the infrared spectral region. Appl Opt. 1993;32(7):1154–67. | 
		
				| [40] | Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, et al. Imaging based on metalenses. PhotoniX. 2020;1(1):1–24. | 
		
				| [41] | Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX. 2020;1(1):1–12. |