| [1] | Bastug E, Bennis M, Medard M, Debbah M. Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun Mag. 2017;55:110–7. | 
		
				| [2] | Wakunami K, Hsieh PY, Oi R, Senoh T, Sasaki H, Ichihashi Y, Okui M, Huang YP, Yamamoto K. Projection-type see-through holographic three-dimensional display. Nat Commun. 2016;7:12954. | 
		
				| [3] | Hirayama R, Plasencia DM, Masuda N, Subramanian S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature. 2019;575:320–3. | 
		
				| [4] | Griffiths AD, Herrnsdorf J, Strain MJ, Dawson MD. Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera. Opt Express. 2019;27:15585–94. | 
		
				| [5] | Zhang H, Li L, Mccray DL, Yao D, Yi AY. A microlens array on curved substrates by 3D micro projection and reflow process. Sens Actuators A Phys. 2012;179:242–50. | 
		
				| [6] | Wang Z, Chen RS, Zhang X, Lv GQ, Feng QB, Hu ZA, Ming H, Wang AT. Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique. Appl Phys Lett. 2018;113:221109. | 
		
				| [7] | Li G, Lee D, Jeong Y, Cho J, Lee B. Holographic display for see-through augmented reality using mirror-lens holographic optical element. Opt Lett. 2016;41:2486–9. | 
		
				| [8] | Wang YJ, Lin YH. An optical system for augmented reality with electrically tunable optical zoom function and image registration exploiting liquid crystal lenses. Opt Express. 2019;27:21163–72. | 
		
				| [9] | Li M, Lavest JM. Some aspects of zoom lens camera calibration. IEEE T Pattern Anal. 1996;18:1105–10. | 
		
				| [10] | Park J, Lee K, Park Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat Commun. 2019;10:1304. | 
		
				| [11] | Kozacki T, Kujawińska M, Finke G, Zaperty W, Hennelly B. Holographic capture and display systems in circular configurations. J Disp Technol. 2012;8:225–32. | 
		
				| [12] | Kakue T, Wagatsuma Y, Yamada S, Nishitsuji T, Endo Y, Nagahama Y, Hirayama R, Shimobaba T, Ito T. Review of real-time reconstruction techniques for aerial-projection holographic displays. Opt Eng. 2018;57:061621. | 
		
				| [13] | Buckley E. Holographic projector using one lens. Opt Lett. 2010;35:3399–401. | 
		
				| [14] | Wang D, Liu C, Wang QH. Holographic zoom system having controllable light intensity without undesirable light based on multifunctional liquid device. IEEE Access. 2019;7:99900–6. | 
		
				| [15] | Ducin I, Shimobaba T, Makowski M, Kakarenko K, Kowalczyk A, Suszek J, Bieda M, Kolodziejczyk A, Sypek M. Holographic projection of images with step-less zoom and noise suppression by pixel separation. Opt Commun. 2015;340:131–5. | 
		
				| [16] | Shimobaba T, Makowski M, Kakue T, Oikawa M, Okada N, Endo Y, Hirayama R, Ito T. Lensless zoomable holographic projection using scaled Fresnel diffraction. Opt Express. 2013;21:25285–90. | 
		
				| [17] | Lin HC, Collings N, Chen MS, Lin YH. A holographic projection system with an electrically tuning and continuously adjustable optical zoom. Opt Express. 2012;20:27222–9. | 
		
				| [18] | Lee JS, Kim YK, Won YH. Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display. Opt Express. 2018;26:2149–59. | 
		
				| [19] | Yang SJ, Allen WE, Kauvar I, Andalman AS, Young NP, Kim CK, Marshel JH, Wetzstein G, Deisseroth K. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt Express. 2015;23:32573–81. | 
		
				| [20] | Sando Y, Barada D, Yatagai T. Full-color holographic 3D display with horizontal full viewing zone by spatiotemporal-division multiplexing. Appl Opt. 2018;57:7622–6. | 
		
				| [21] | Senoh T, Mishina T, Yamamoto K, Oi R, Kurita T. Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination. J Disp Technol. 2011;7:12060091. | 
		
				| [22] | Lin SF, Cao HK, Kim ES. Single SLM full-color holographic three dimensional video display based on image and frequency-shift multiplexing. Opt Express. 2019;27:15926–42. | 
		
				| [23] | Malyuk AY, Ivanova NA. Varifocal liquid lens actuated by laser-induced thermal Marangoni forces. Appl Phys Lett. 2018;112:103701. | 
		
				| [24] | Liu C, Wang D, Wang QH. Variable aperture with graded attenuation combined with adjustable focal length lens. Opt Express. 2019;27:14075–83. | 
		
				| [25] | Dong L, Agarwal AK, Beebe DJ, Jiang H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature. 2006;442:551–4. | 
		
				| [26] | Ren H, Wu ST. Variable-focus liquid lens. Opt Express. 2007;15:5931–6. | 
		
				| [27] | Chen MS, Collings N, Lin HC, Lin YH. A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction. J Disp Technol. 2014;10:450–5. | 
		
				| [28] | Lee JS, Kim YK, Lee MY, Won YH. Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display. Opt Express. 2019;27:689–701. | 
		
				| [29] | Wang D, Liu C, Wang QH. Method of chromatic aberration elimination in holographic display based on zoomable liquid lens. Opt Express. 2019;27:10058–66. |