留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Universal orbital angular momentum spectrum analyzer for beams

Shiyao Fu Yanwang Zhai Jianqiang Zhang Xueting Liu Rui Song Heng Zhou Chunqing Gao

Shiyao Fu, Yanwang Zhai, Jianqiang Zhang, Xueting Liu, Rui Song, Heng Zhou, Chunqing Gao. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX. doi: 10.1186/s43074-020-00019-5
引用本文: Shiyao Fu, Yanwang Zhai, Jianqiang Zhang, Xueting Liu, Rui Song, Heng Zhou, Chunqing Gao. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX. doi: 10.1186/s43074-020-00019-5
Shiyao Fu, Yanwang Zhai, Jianqiang Zhang, Xueting Liu, Rui Song, Heng Zhou, Chunqing Gao. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX. doi: 10.1186/s43074-020-00019-5
Citation: Shiyao Fu, Yanwang Zhai, Jianqiang Zhang, Xueting Liu, Rui Song, Heng Zhou, Chunqing Gao. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX. doi: 10.1186/s43074-020-00019-5

Universal orbital angular momentum spectrum analyzer for beams

doi: 10.1186/s43074-020-00019-5
基金项目: 

National Postdoctoral Program for Innovative Talents of China (BX20190036)

China Postdoctoral Science Foundation (2019M650015)

National Natural Science Foundation of China (NSFC) (11834001, 61905012)

CETC joint research foundation (6141B08231125).

Beijing Institute of Technology Research Fund Program for Young Scholars

Universal orbital angular momentum spectrum analyzer for beams

Funds: 

National Postdoctoral Program for Innovative Talents of China (BX20190036)

China Postdoctoral Science Foundation (2019M650015)

National Natural Science Foundation of China (NSFC) (11834001, 61905012)

CETC joint research foundation (6141B08231125).

Beijing Institute of Technology Research Fund Program for Young Scholars

  • 摘要: The orbital angular momentum (OAM) of beams provides a new dimension, and have already found lots of applications in various domains. Among such applications, the precisely and quantitatively diagnostic of intensity distributions among different OAM modes, namely the OAM spectrum of a beam, is of great significance. In this paper we propose and experimentally validate a simple interferential method to achieve this goal. By analyzing the interference pattern formed by the beam and a reference field, the OAM spectrum can be obtained instantaneously. Furthermore, the proposed method is also available for more complex light fields, for instance, the multi-ring optical vortices. In the proof-ofconcept experiment, the OAM spectra of both single-mode and N-fold multiplexed OAM modes with various intensity distributions are well detected. Our work offers a new way to precisely measure the OAM spectra of beams and will advance the development of many applications ranging from classical to quantum physics as the OAM based large-capacity data transmissions, rotation detection, quantum manipulation and so on.
      关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–9.
    [2] Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics. 2011;3:161–204.
    [3] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser Photon Rev. 2008;2:299–313.
    [4] Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys. 2007;3:305–10.
    [5] Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6:488–96.
    [6] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit- scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340:1545–8.
    [7] Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express. 2015;23:3075–87.
    [8] Lei T, Zhang M, Li Y, Jia P, Liu GN, Xu X, Li Z, Min C, Lin J, Yu C, Niu H, Yuan X. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Sci Appl. 2015;4:e257.
    [9] Fu S, Zhai Y, Zhou H, Zhang J, Wang T, Yin C, Gao C. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Opt Lett. 2019;44:4753–6.
    [10] Lavery MPJ, Speirits FC, Barnett SM, Padgett MJ. Detection of a spinning object using light’s orbital angular momentum. Science. 2013;341:537–40.
    [11] Lavery MPJ, Barnett SM, Speirits FC, Padgett MJ. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica. 2014;1:1–4.
    [12] Fu S, Wang T, Zhang Z, Zhai Y, Gao C. Non-diffractive Bessel-gauss beams for the detection of rotating object free of obstructions. Opt Express. 2017;25:20098–108.
    [13] Zhai Y, Fu S, Yin C, Zhou H, Gao C. Detection of angular acceleration based on optical rotational Doppler effect. Opt Express. 2019;27:15518–27.
    [14] Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–6.
    [15] Padgett M, Bowman R. Tweezers with a twist. Nat Photon. 2011;5:343–8.
    [16] Qiu X, Li F, Zhang W, Zhu Z, Chen L. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica. 2018;5:208–12.
    [17] Fickler R, Lapkiewicz R, Plick WN, Krenn M, Schaeff C, Ramelow S, Zeilinger A. Quantum entanglement of high angular momenta. Science. 2012;338:640–3.
    [18] Larocque H, Gagnon-Bischoff J, Mortimer D, Zhang Y, Bouchard F, Upham J, Grillo V, Boyd RW, Karimi E. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography. Opt Express. 2017;25:19832–43.
    [19] Granata M, Buy C, Ward R, Barsuglia M. Higher-order Laguerre-gauss mode generation and interferometry for gravitational wave detectors. Phys Rev Lett. 2010;105:231102.
    [20] Noack A, Bogan C, Willke B. Higher-order Laguerre–gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors. Opt Lett. 2017;42:751–4.
    [21] Tamburini F, Thidé B, Molina-Terriza G, Anzolin G. Twisting of light around rotating black holes. Nat Phys. 2011;7:195–7.
    [22] Harris M, Hill C, Tapster P, Vaughan JM. Laser modes with helical wave-fronts. Phys Rev A. 1994;49:3119–22.
    [23] Soskin M, Gorshkov V, Vasnetsov M, Malos J, Heckenberg NR. Topological charge and angular momentum of light beams carrying optical vortices. Phys Rev A. 1997;56:4064–75.
    [24] Leach J, Padgett MJ, Barnett SM, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Phys Rev Lett. 2002;88:257901.
    [25] Lavery MPJ, Dudley A, Forbes A, Courtial J, Padgett MJ. Robust interferometer for the routing of light beams carrying orbital angular momentum. New J Phys. 2011;13:093014.
    [26] Zhang W, Qi Q, Zhou J, Chen L. Mimicking faraday rotation to sort the orbital angular momentum of light. Phys Rev Lett. 2014;112:153601.
    [27] Sztul HI, Alfano RR. Double-slit interference with Laguerre-Gaussian beams. Opt Lett. 2006;31:999–1001.
    [28] Hickmann JM, Fonseca EJS, Soares WC, Chavez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys Rev Lett. 2010;105:053904.
    [29] Zhang W, Wu Z, Wang J, Chen L. Experimental demonstration of twisted light’s diffraction theory based on digital spiral imaging. Chin Opt Lett. 2016;14:110501.
    [30] Dai K, Gao C, Zhong L, Na Q, Wang Q. Measuring OAM states of light beams with gradually-changing-period gratings. Opt Lett. 2015;40:562–5.
    [31] Fu S, Wang T, Gao Y, Gao C. Diagnostics of the topological charge of optical vortex by a phase-diffractive element. Chin Opt Lett. 2016;14:080501.
    [32] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pasko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12:5448–56.
    [33] Zhang N, Yuan XC, Burge RE. Extending the detection range of optical vortices by Dammann vortex gratings. Opt Lett. 2010;35:3495–7.
    [34] Fu S, Wang T, Zhang S, Gao C. Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of −24 to +24. Appl Opt. 2016;55:1514–7.
    [35] Berkhout GCG, Lavery MPJ, Courtial J, Beijersbergen MW, Padgett MJ. Efficient sorting of orbital angular momentum states of light. Phys Rev Lett. 2010;105:153601.
    [36] Mirhosseini M, Malik M, Shi Z, Boyd RW. Efficient separation of the orbital angular momentum eigenstates of light. Nat Commun. 2013;4:2781.
    [37] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y, Yu S. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys Rev Lett. 2018;120:193904.
    [38] Sahu R, Chaudhary S, Khare K, Bhattacharya M, Wanare H, Jha AK. Angular lens. Opt Express. 2018;26:8709–18.
    [39] Cicek K, Hu Z, Zhu J, Meriggi L, Li S, Nong Z, Gao S, Zhang N, Wang X, Cai X, Sorel M, Yu S. Integrated optical vortex beam receivers. Opt Express. 2016;24:28529–39.
    [40] Genevet P, Lin J, Kats MA, Capasso F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat Commun. 2012;3:1278.
    [41] Jin J, Luo J, Zhang X, Gao H, Li X, Pu M, Gao P, Zhao Z, Luo X. Generation and detection of orbital angular momentum via metasurface. Sci Rep. 2016;6:24286.
    [42] Devlin RC, Ambrosio A, Wintz D, Oscurato SL, Zhu AY, Khorasaninejad M, Oh J, Maddalena P, Capasso F. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt Express. 2017;25:377–93.
    [43] Chen P, Ma LL, Duan W, Chen J, Ge SJ, Zhu ZH, Tang MJ, Xu R, Gao W, Li T, Hu W, Lu YQ. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv Mater. 2018;30:1705865.
    [44] Fu S, Zhang S, Wang T, Gao C. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt Express. 2016;24:6240–8.
    [45] Vasnetsov MV, Torres JP, Petrov DV, Torner L. Observation of the orbital angular momentum spectrum of a light beam. Opt Lett. 2003;28:2285–7.
    [46] Zhou HL, Fu DZ, Dong JJ, Zhang P, Chen DX, Cai XL, Li FL, Zhang XL. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci Appl. 2017;6:e16251.
    [47] Zhao P, Li S, Feng X, Cui K, Liu F, Zhang W, Huang Y. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Opt Lett. 2017;42:1080–3.
    [48] D’Errico A, D’Amelio R, Piccirillo B, Cardano F, Marrucci L. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica. 2017;4:1350–7.
    [49] Huang H, Ren Y, Yan Y, Ahmed N, Yue Y, Bozovich A, Erkmen BI, Birnbaum K, Dolinar S, Tur M, Willner AE. Phase-shift interference-based wavefront characterization for orbital angular momentum modes. Opt Lett. 2013;38:2348–50.
    [50] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon. 2009;1:1–57.
    [51] Fu S, Gao C, Wang T, Zhai Y, Yin C. Anisotropic polarization modulation for the production of arbitrary Poincaré beams. J Opt Soc Am B. 2018;35:1–7.
    [52] Liu YD, Gao C, Gao M, Li F. Coherent-mode represen- tation and orbital angular momentum spectrum of partially coherent beam. Opt Commun. 2008;281:1968–75.
    [53] Schulze C, Dudley A, Flamm D, Duparr’e D, Forbes A. Measurement of the orbital angular momentum density of light by modal decomposition. New J Phys. 2013;15:073025.
    [54] Lin J, Yuan XC, Tao SH, Burge RE. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Opt Lett. 2005;30:3266–8.
    [55] Qiao Z, Xie G, Wu Y, Yuan P, Ma J, Qian L, Fan D. Generating high-charge optical vortices directly from laser up to 288th order. Laser Photon Rev. 2018;12:1800019.
    [56] Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci Rep. 2015;5:9677.
    [57] Ohtake Y, Ando T, Fukuchi N, Matsumoto N, Ito H, Hara T. Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator. Opt Lett. 2007;32:1411–3.
    [58] Moreno I, Davis JA, Hernandez TM, Cottrell DM, Sand D. Complete polarization control of light from a liquid crystal spatial light modulator. Opt Express. 2012;20:364–76.
    [59] Yang Y, Zhao Q, Liu L, Liu Y, Rosales-Guzmán C, Qiu CW. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys Rev Appl. 2019;12:064007.
  • 加载中
计量
  • 文章访问数:  209
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 录用日期:  2020-07-23
  • 网络出版日期:  2020-08-17

目录

    /

    返回文章
    返回