留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tolerance analysis of non-depolarizing double-pass polarimetry

Yimin Yu Nabila Baba-Ali Gregg M. Gallatin

Yimin Yu, Nabila Baba-Ali, Gregg M. Gallatin. Tolerance analysis of non-depolarizing double-pass polarimetry[J]. PhotoniX. doi: 10.1186/s43074-020-00018-6
引用本文: Yimin Yu, Nabila Baba-Ali, Gregg M. Gallatin. Tolerance analysis of non-depolarizing double-pass polarimetry[J]. PhotoniX. doi: 10.1186/s43074-020-00018-6
Yimin Yu, Nabila Baba-Ali, Gregg M. Gallatin. Tolerance analysis of non-depolarizing double-pass polarimetry[J]. PhotoniX. doi: 10.1186/s43074-020-00018-6
Citation: Yimin Yu, Nabila Baba-Ali, Gregg M. Gallatin. Tolerance analysis of non-depolarizing double-pass polarimetry[J]. PhotoniX. doi: 10.1186/s43074-020-00018-6

Tolerance analysis of non-depolarizing double-pass polarimetry

doi: 10.1186/s43074-020-00018-6
基金项目: 

Shanghai Micro Electronics Equipment (Group) Co., Ltd.

Tolerance analysis of non-depolarizing double-pass polarimetry

Funds: 

Shanghai Micro Electronics Equipment (Group) Co., Ltd.

  • 摘要: Double-pass polarimetry measures the polarization properties of a sample over a range of polar angles and all azimuths. Here, we present a tolerance analysis of all the optical elements in both the calibration and measurement procedures to predict the sensitivities of the double-pass polarimeter. The calibration procedure is described by a Mueller matrix based on the eigenvalue calibration method (ECM)[1]. Our numerical results from the calibration and measurement in the Mueller matrix description with tolerances limited by systematic and stochastic noise from specifications of commercially available hardware components are in good agreement with previous experimental observations. Furthermore, by using the orientation Zernike polynomials (OZP) which are an extension of the Jones matrix formalism, similar to the Zernike polynomials wavefront expansion, the pupil distribution of the polarization properties of non-depolarizing samples under test are expanded. Using polar angles ranging up to 25°, we predict a sensitivity of 0.5% for diattenuation and 0.3° for retardance using the root mean square (RMS) of the corresponding OZP coefficients as a measure of the error. This numerical tool provides an approach for further improving the sensitivities of polarimeters via error budgeting and replacing sensitive components with those having better precision.
      关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Compain E, Poirier S, Drevillon B. General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers. Appl Opt. 1999; 38(16):3490–502.
    [2] Ibrahim BH, Hatit SB, Martino AD. Angle resolved mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples. Appl Opt. 2009; 48(27):5025–34.
    [3] Garcia-Caurel E, Ossikovski R, Foldyna M, Pierangelo A, Drévillon B, De Martino A. Advanced mueller ellipsometry instrumentation and data analysis In: Losurdo M, Hingerl K, editors. Ellipsometry at the Nanoscale. Berlin, Heidelberg: Springer: 2013. p. 31–143.
    [4] McIntyre G, Neureuther A. Psm polarimetry: monitoring polarization at 193nm high-na and immersion with phase shifting masks In: Smith BW, editor. Proc. of SPIE 5754, Optical Microlithography XVIII. Bellingham: International Society for Optics and Photonics: 2005.
    [5] Geh B, Ruoff J, Zimmermann J, Gräupner P, Totzeck M, Mengel M, Hempelmann U, Schmitt-Weaver E. The impact of projection lens polarization properties on lithographic process at hyper-NA In: Flagello DG, editor. Proc. of SPIE 6520, Optical Microlithography XX. San Jose: International Society for Optics and Photonics: 2007. p. 186–203.
    [6] Nomura H, Furutono Y. Polarimetry of illumination for 193-nm lithography used for the manufacture of high-end lsis In: Wang Y, Tschudi TT, Rolland JP, Tatsuno K, editors. Proc. of SPIE 6834, Optical Design and Testing III, 683408. Beijing: International Society for Optics and Photonics: 2007. p. 1–14.
    [7] Nomura H, Furutono Y. In-situ polarimetry of illumination for 193-nm lithography In: Levinson HJ, Dusa MV, editors. Proc. of SPIE 6924, Optical Microlithography XXI. San Jose: International Society for Optics and Photonics: 2008. p. 632–43.
    [8] Nomura H, Higashikawa I. In-situ Mueller matrix polarimetry of projection lenses for 193-nm lithography In: Dusa MV, Conley W, editors. Proc. of SPIE 7640, Optical Microlithography XXIII, 76400Q. San Jose: 2010. p. 1–11.
    [9] Goodwin EP, Wyant JC, Greivenkamp JE. International Society for Optics and Photonics Field guide to Interferometric Optical Testing. Bellingham: SPIE Press: 2006. p. 9–19.
    [10] Ren D, Lawton KM, Miller JA. A double-pass interferometer for measurement of dimensional changes. Meas Sci Technol. 2008; 19:025303.
    [11] Tou ZQ, Chan CC, Hong J, Png S, Eddie KMT, Tan TAH. Double-pass mach-zehnder fiber interferometer ph sensor. J Biomed Opt. 2014; 19(4):047002.
    [12] Heil T, Ruoff J, Neumann JT, Totzeck M, Krähmer D, Geh B, Gräupner P. Orientation Zernike Polynomials: a systematic description of polarized imaging using high NA lithography lenses In: Chen AC, Lin B, Yen A, editors. Proc. of SPIE 7140, Lithography Asia 2008. Taipei: International Society for Optics and Photonics: 2008. p. 287–98.
    [13] Ruoff J, Totzeck M. Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems. J Micro/Nanolithography, MEMS, and MOEMS. 2009; 8(3):1–22.
    [14] Ruoff J, Totzeck M. Using orientation zernike polynomials to predict the imaging performance of optical systems with birefringent and partly polarizing components In: Bentley J, Gupta A, Youngworth RN, editors. 7652, International Optical Design Conference 2010, 76521T. Wyoming: Optical Society of America: 2010.
    [15] Stolk RP. Variable attenuator for a lithographic apparatus. 2008. US 7,433,139 B2, United States Patent and Trademark Office.
    [16] Yeh P. Extended jones matrix method. J Opt Soc Am. 1982; 72(4):507–13.
    [17] Freriks HJ, Heemels WPMH, Muller G, Sandee H. On the systematic use of budget-based design. In: INCOSE-International Council on Systems Engineering, vol. 1. Orlando: INCOSE: 2006.
    [18] Jellison GE, Modine FA. Two-modulator generalized ellipsometry: experiment and calibration. Appl Opt. 1997; 36(31):8184–189.
    [19] Stabo-Eeg F. Development of instrumentation for mueller matrix ellipsometry. PhD thesis, Norwegian University of Science and Technology, Faculty of Natural Science and Technology, Department of Physics. 2009.
    [20] Lu S-Y, Chipman RA. Homogeneous and inhomogeneous jones matrices. J Opt Soc Am A. 1994; 11(2):766–73.
    [21] Korger J, Kolb T, Banzer P, Aiello A, Wittmann C, Marquardt C, Leuchs G. The polarization properties of a tilted polarizer. Opt Express. 2013; 21(22):27032–42.
    [22] Paetzel R, Albrecht HS, Lokai P, Zschocke W, Schmidt T, Bragin I, Schroeder T, Reusch C, Spratte S. Excimer laser for superhigh NA 193-nm lithography In: Yen A, editor. Proc. of SPIE 5040, Optical Microlithography XVI. Santa Clara: International Society for Optics and Photonics: 2003. p. 1665–71.
    [23] EMVA 1288, Standard for Characterization of Image Sensors and Cameras, release 3.0. 2010. European Machine Vision Association.
    [24] Stepper Motor Rotation Mount. https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=8750. Accessed July 2020.
    [25] Laude-Boulesteix B. Développements instrumentaux en imagerie tomographique et polarimétrique. PhD thesis, Ecole polytechnique, Laboratoire de physique des interfaces et des couches minces. 2004.
    [26] CODE V Lens System Setup Reference Manual. Synopsys , INC.
    [27] Simon R. Mueller matrices and depolarization criteria. J Mod Opt. 1987; 34(4):569–75.
    [28] Savenkov SN, Marienko VV. Method of extraction of the Mueller-Jones part out of an experimental Mueller matrix In: Leif RC, Priezzhev AV, Asakura T, Leif RC, editors. Proc. of SPIE 2982, Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology. San Jose, California: International Society for Optics and Photonics: 1997. p. 226–31.
    [29] Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions. ISO 5725-1. Geneva: International Organization for Standardization; 1994.
    [30] Meng Z, Li S, Wang X, Bu Y, Wang J, Ni S, Yang C, Mao Y. Jones pupil metrology of lithographic projection lens and its optimal configuration in the presence of error sources. Opt Express. 2019; 27(4):4629–47.
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 录用日期:  2020-07-17
  • 网络出版日期:  2020-08-12

目录

    /

    返回文章
    返回