| [1] | Fenster A, Downey DB, Cardinal HN. Three-dimensional ultrasound imaging. Phys Med Biol. 2001;46(5):R67. | 
		
				| [2] | Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. SPIE press, 2003. | 
		
				| [3] | Rooney W. MRI: from picture to proton. Health Phys. 2003;85(4):504–5. | 
		
				| [4] | Bailey D L, Maisey M N, Townsend D W, et al. Positron emission tomography. London: Springer; 2005. | 
		
				| [5] | Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603. | 
		
				| [6] | Sharpe J, Ahlgren U, Perry P, et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science. 2002;296(5567):541–5. | 
		
				| [7] | Power RM, Huisken J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 2017;14(4):360. | 
		
				| [8] | Hermann B, Fernández E, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett. 2004;29(18):2142–4. | 
		
				| [9] | Benalcazar WA, Jung W, Boppart SA. Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters. Opt Lett. 2012;37(6):1100–2. | 
		
				| [10] | Zawadzki RJ, Jones SM, Olivier SS, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express. 2005;13(21):8532–46. | 
		
				| [11] | Jang J, Lim J, Yu H, et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography. Opt Express. 2013;21(3):2890–902. | 
		
				| [12] | Ginner L, Kumar A, Fechtig D, et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo. Optica. 2017;4(8):924–31. | 
		
				| [13] | Hillmann D, Spahr H, Hain C, et al. Aberration-free volumetric high-speed imaging of in vivo retina. Sci Rep. 2016;6:35209. | 
		
				| [14] | Adie SG, Graf BW, Ahmad A, et al. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc Natl Acad Sci. 2012;109(19):7175–80. | 
		
				| [15] | Shemonski ND, South FA, Liu Y-Z, et al. Computational high-resolution optical imaging of the living human retina. Nat Photonics. 2015;9(7):440. | 
		
				| [16] | Ahmad A, Shemonski ND, Adie SG, et al. Real-time in vivo computed optical interferometric tomography. Nat Photonics. 2013;7(6):444. | 
		
				| [17] | Yasuno Y, Sugisaka J-i, Sando Y, et al. Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography. Opt Express. 2006;14(3):1006–20. | 
		
				| [18] | Kumar A, Drexler W, Leitgeb RA. Numerical focusing methods for full field OCT: a comparison based on a common signal model. Opt Express. 2014;22(13):16061–78. | 
		
				| [19] | Ralston TS, Marks DL, Carney PS, et al. Interferometric synthetic aperture microscopy. Nat Phys. 2007;3(2):129. | 
		
				| [20] | Mo J, de Groot M, de Boer JF. Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Opt Express. 2013;21(8):10048–61. | 
		
				| [21] | Bo E, Luo Y, Chen S, et al. Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis. Optica. 2017;4(7):701–6. | 
		
				| [22] | Bo E, Ge X, Wang L, et al. Multiple aperture synthetic optical coherence tomography for biological tissue imaging. Opt Express. 2018;26(2):772–80. | 
		
				| [23] | Cui D, Liu X, Zhang J, et al. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo. Opt Lett. 2014;39(23):6727–30. | 
		
				| [24] | Liu L, Gardecki JA, Nadkarni SK, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat Med. 2011;17(8):1010. | 
		
				| [25] | Chu KK, Kusek ME, Liu L, et al. Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography. Sci Rep. 2017;7:45789. | 
		
				| [26] | Gora MJ, Sauk JS, Carruth RW, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med. 2013;19(2):238–40. | 
		
				| [27] | Gora MJ, Suter MJ, Tearney GJ, et al. Endoscopic optical coherence tomography: technologies and clinical applications. Biomed Opt Express. 2017;8(5):2405–44. | 
		
				| [28] | Liang K, Traverso G, Lee H-C, et al. Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomed Opt Express. 2015;6(4):1146–63. | 
		
				| [29] | Lan G, Li G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography. Sci Rep. 2017;7:42353. | 
		
				| [30] | Siddiqui M, Nam AS, Tozburun S, et al. High-speed optical coherence tomography by circular interferometric ranging. Nat Photonics. 2018;12(2):111. | 
		
				| [31] | Meites S. Skin-puncture and blood-collecting technique for infants: update and problems. Clin Chem. 1988;34(9):1890–4. | 
		
				| [32] | Shah VS, Taddio A, Bennett S, et al. Neonatal pain response to heel stick vs venepuncture for routine blood sampling. Arch Dis Child Fetal Neonatal Ed. 1997;77(2):F143–4. | 
		
				| [33] | Chirivella I, Bermejo B, Insa A, et al. Impact of chemotherapy dose-related factors on survival in breast cancer patients treated with adjuvant anthracycline-based chemotherapy. J Clin Oncol. 2006;24(18_suppl):668. | 
		
				| [34] | Clamp AR, Ryder WDJ, Bhattacharya S, et al. Patterns of mortality after prolonged follow-up of a randomised controlled trial using granulocyte colony-stimulating factor to maintain chemotherapy dose intensity in non-Hodgkin’s lymphoma. Br J Cancer. 2008;99(2):253. |