Turn off MathJax
Article Contents
Minseok Choi, Hyunjung Kang, Dohyun Kang, Joohoon Kim, Hongyoon Kim, Junhwa Seong, Seokwoo Kim, Junsuk Rho. Hybrid high-index composite meta-structures with atomic layer-coated nanoparticle-embedded resin[J]. PhotoniX. doi: 10.1186/s43074-025-00204-4
Citation: Minseok Choi, Hyunjung Kang, Dohyun Kang, Joohoon Kim, Hongyoon Kim, Junhwa Seong, Seokwoo Kim, Junsuk Rho. Hybrid high-index composite meta-structures with atomic layer-coated nanoparticle-embedded resin[J]. PhotoniX. doi: 10.1186/s43074-025-00204-4

Hybrid high-index composite meta-structures with atomic layer-coated nanoparticle-embedded resin

doi: 10.1186/s43074-025-00204-4
Funds:  This work was financially supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO, the Samsung Research Funding and Incubation Center for Future Technology grant (SRFC-IT1901-52) funded by Samsung Electronics, and the National Research Foundation (NRF) grant (RS-2024-00462912) funded by the Ministry of Science and ICT (MSIT) of the Korean government., H.J.K. acknowledges the NRF Ph.D. fellowship (RS-2024-00407755) funded by the Ministry of Education (MOE) of the Korean government. J.K. and H.Y.K. acknowledges the Asan Foundation Biomedical Science fellowship. M.C. H.J.K., J.K. and H.Y.K. acknowledges the Presidential Science fellowship funded by the MSIT of the Korean government. J.S. acknowledges the 3·1 Foundation fellowship.
  • Received Date: 2025-05-28
  • Accepted Date: 2025-10-12
  • Rev Recd Date: 2025-08-29
  • Available Online: 2025-10-31
  • Metasurfaces offer great potential to replace conventional optics by enabling multi-functionalities in compact form factors. However, their mass production remains at crossroads, as most materials compatible with scalable fabrication like nanoimprint lithography (NIL) exhibit relatively low refractive indices (~ 2), which limit metasurface performance and necessitate tall, high-aspect-ratio meta-atoms prone to bending and collapsing. To address these bottlenecks, we introduce a hybrid nanoparticle-embedded resin (nano-PER) structure that reduces meta-atom height and aspect ratio. By utilizing TiO2 nano-PER as the core material with thin TiO2 coatings, we can implement the optical properties of high refractive index with printable material, achieving a height reduction of over 27% and an aspect ratio reduction of more than 36% compared with conventional hybrid structures using nanoimprint resin. Despite the reduced dimensions, our meta-atoms exhibit high broadband properties, with an average conversion efficiency of over 72% across blue (450 nm), green (532 nm), and red (635 nm) wavelengths. Our design provides robustness in the fabrication process, demonstrated by producing a hyperbolic metalens via NIL and experimentally verifying its optical performance, with an average focusing efficiency of 51.23%. These findings mark an important advancement in scalable, high-performance metasurfaces, paving the way for their practical integration into optical applications.
  • loading
  • [1]
    Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
    [2]
    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10:308–12.
    [3]
    Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retroreflector. Nat Photon. 2017;11:415–20.
    [4]
    Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6.
    [5]
    Rubin NA, D’Aversa G, Chevalier P, Shi Z, Chen WT, Capasso F. Matrix fourier optics enables a compact full-Stokes polarization camera. Science. 2019;365:eaax1839.
    [6]
    Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun. 2013;4:2807.
    [7]
    Gopakumar M, Lee GY, Choi S, Chao B, Peng Y, Kim J, et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature. 2024;629:791–7.
    [8]
    Chen Q, Qu G, Yin J, Wang Y, Ji Z, Yang W, et al. Highly efficient vortex generation at the nanoscale. Nat Nanotechnol. 2024;19(7):1000–6.
    [9]
    Xiong B, Liu Y, Xu Y, Deng L, Chen CW, Wang JN, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science. 2023;379(6629):294–9.
    [10]
    Barulin A, Kim Y, Oh DK, Jang J, Park H, Rho J, et al. Dual-wavelength metalens enables epi-fluorescence detection from single molecules. Nat Commun. 2024;15(1):26.
    [11]
    Li Z, Pestourie R, Park JS, Huang YW, Johnson SG, Capasso F. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat Commun. 2022;13(1):2409.
    [12]
    Kim G, Kim Y, Yun J, Moon SW, Kim S, Kim J, et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat Commun. 2022;13(1):5920.
    [13]
    Choi E, Kim G, Yun J, Jeon Y, Rho J, Baek SH. 360° structured light with learned metasurfaces. Nat Photon. 2024;18(8):848–55.
    [14]
    Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photon. 2019;13(6):390–6.
    [15]
    Kim I, Kim H, Go M, Lee S, Nguyen DD, Kim S, et al. Ultrafast metaphotonic PCR chip with near-perfect absorber. Adv Mater. 2024;36(39):2311931.
    [16]
    Kim I, Kim H, Han S, Kim J, Kim Y, Eom S, et al. Metasurfaces-driven hyperspectral imaging via multiplexed plasmonic resonance energy transfer. Adv Mater. 2023;35(32):2300229.
    [17]
    Zhang C, Xue T, Zhang J, Liu L, Xie J, Wang G, et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics. 2022;11(1):101–9.
    [18]
    Kim J, Kim H, Kang H, Kim W, Chen Y, Choi J, et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat Food. 2024;5(4):293–300.
    [19]
    Juliano Martins R, Marinov E, Youssef MAB, Kyrou C, Joubert M, Colmagro C, et al. Metasurface-enhanced light detection and ranging technology. Nat Commun. 2022;13(1):5724.
    [20]
    Pestourie R, Pérez-Arancibia C, Lin Z, Shin W, Capasso F, Johnson SG. Inverse design of large-area metasurfaces. Opt Express. 2018;26(26):33732–47.
    [21]
    Phan T, Sell D, Wang EW, Doshay S, Edee K, Yang J, et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci Appl. 2019;8(1):48.
    [22]
    So S, Mun J, Park J, Rho J. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater. 2023;35(43):2206399.
    [23]
    Chen BH, Wu PC, Su VC, Lai YC, Chu CH, Lee IC, et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 2017;17(10):6345–52.
    [24]
    Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, et al. All-dielectric metasurface for high-performance structural color. Nat Commun. 2020;11(1):1864.
    [25]
    Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10(11):937–43.
    [26]
    Yang JH, Babicheva VE, Yu MW, Lu TC, Lin TR, Chen KP. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano. 2020;14(5):5678–85.
    [27]
    Russo M, Rigby SE, Caseri W, Stingelin N. Pronounced photochromism of titanium oxide hydrates (hydrous TiO2). J Mater Chem. 2010;20(7):1348–56.
    [28]
    Russo M, Rigby SE, Caseri W, Stingelin N. Versatile chromism of titanium oxide hydrate/poly (vinyl alcohol) hybrid systems. Adv Mater. 2012;24(22):3015–9.
    [29]
    Durbin MM, Votta I, Balzer AH, Procházka M, Valentin M, Omastová M, et al. Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers. Polym Int. 2024;73(12):1017–21.
    [30]
    Kim J, Seong J, Kim W, Lee GY, Kim S, Kim H, et al. Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible. Nat Mater. 2023;22(4):474–81.
    [31]
    Saleh BEA, Teich MC. Fundamentals of photonics: 2 volume set. 3rd ed. Hoboken: John Wiley & Sons; 2019.
    [32]
    Kim J, Kim W, Oh DK, Kang H, Kim H, Badloe T, et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci Appl. 2023;12(1):68.
    [33]
    Kang H, Kim H, Kim K, Rho J. Printable spin-multiplexed metasurfaces for ultraviolet holographic displays. ACS Nano. 2024;18(32):21504–11.
    [34]
    Kim J, Oh DK, Kim H, Yoon G, Jung C, Kim J, et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photon Rev. 2022;16(8):2200098.
    [35]
    Einck VJ, Torfeh M, McClung A, Jung DE, Mansouree M, Arbabi A, et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics. 2021;8(8):2400–9.
    [36]
    Kothari R, Beaulieu MR, Hendricks NR, Li S, Watkins JJ. Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chem Mater. 2017;29(9):3908–18.
    [37]
    Lai X, Ren Q, Vogelbacher F, Sha WE, Hou X, Yao X, et al. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv Mater. 2022;34(3):2107243.
    [38]
    Yoon G, Kim K, Huh D, Lee H, Rho J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat Commun. 2020;11(1):2268.
    [39]
    Yoon G, Kim K, Kim SU, Han S, Lee H, Rho J. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano. 2021;15(1):698–706.
    [40]
    Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4. Piscataway (NJ): IEEE; 1995. p. 1942–8.
    [41]
    Kang H, Tanaka T, Duan H, Cao T, Rho J. State-of-the-art micro-and nano-scale photonics research in Asia: devices, fabrication, manufacturing, and applications. Microsyst Nanoeng. 2024;10(1):114.
    [42]
    Lee C, Chang G, Kim J, Hyun G, Bae G, So S, et al. Concurrent optimization of diffraction fields from binary phase mask for three-dimensional nanopatterning. ACS Photonics. 2022;10(4):919–27.
    [43]
    Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules. 2000;33(8):3042–9.
    [44]
    Cao K, Zhu Q, Shan B, Chen R. Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci Rep. 2015;5(1):8470.
    [45]
    Van Ommen JR, Goulas A. Atomic layer deposition on particulate materials. Mater Today Chem. 2019;14:100183.
    [46]
    Kim J, Kim Y, Kim W, Oh DK, Kang D, Seong J, et al. 8 ″wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater Today. 2024;73:9–15.
    [47]
    Yang Y, Kang D, Seong J, Kim K, Kim S, Jung C, et al. Mechanically robust and self-cleanable encapsulated metalens via spin-on-glass packaging. Microsyst Nanoeng. 2025;11(1):118.
    [48]
    Park JS, Zhang S, She A, Chen WT, Lin P, Yousef KM, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 2019;19(12):8673–82.
    [49]
    Goodman JW. Introduction to Fourier optics. 3rd ed. Englewood (CO): Roberts and Company Publishers; 2005.
    [50]
    Kim S, Kim J, Kim K, Jeong M, Rho J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat Commun. 2025;16(1):411.
    [51]
    Ahn SH, Guo LJ. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano. 2009;3(8):2304–10.
    [52]
    Leitgeb M, Nees D, Ruttloff S, Palfinger U, Götz J, Liska R, et al. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano. 2016;10(5):4926–41.
    [53]
    Howell IR, Einck VJ, Nees D, Stadlober B, Watkins JJ. Solvent-free, transparent, high-refractive index ZrO2 nanoparticle composite resin for scalable roll to roll UV-nanoimprint lithography. Opt Laser Technol. 2021;141:107101.
    [54]
    Badloe T, Kim I, Kim Y, Kim J, Rho J. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci. 2021;8(21):2102646.
    [55]
    Shalaginov MY, An S, Yang F, Su P, Lyzwa D, Agarwal AM, et al. Single-element diffraction-limited fisheye metalens. Nano Lett. 2020;20(10):7429–37.
    [56]
    Zhang F, Pu M, Li X, Ma X, Guo Y, Gao P, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater. 2021;33(11):2008157.
    [57]
    Li Z, Pestourie R, Lin Z, Johnson SG, Capasso F. Empowering metasurfaces with inverse design: principles and applications. ACS Photonics. 2022;9(7):2178–92.
    [58]
    Huang SH, Su HP, Chen CY, Lin YC, Yang Z, Shi Y, et al. Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering. Nat Commun. 2024;15(1):9658.
    [59]
    Hassanfiroozi A, Lu YC, Wu PC. Hybrid anapole induced chirality in metasurfaces. Adv Mater. 2024;36(46):2410568.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (7) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return