Turn off MathJax
Article Contents
Yibo Liu, Guobin Wang, Feng Feng, Mengyuan Zhanghu, Zhengnan Yuan, Zichun Li, Ke Xu, Hoi Sing Kwok, Zhaojun Liu. Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays[J]. PhotoniX. doi: 10.1186/s43074-024-00137-4
Citation: Yibo Liu, Guobin Wang, Feng Feng, Mengyuan Zhanghu, Zhengnan Yuan, Zichun Li, Ke Xu, Hoi Sing Kwok, Zhaojun Liu. Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays[J]. PhotoniX. doi: 10.1186/s43074-024-00137-4

Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays

doi: 10.1186/s43074-024-00137-4
Funds:  The authors would like to thank Shenzhen Sitan Technology, Nanosystem Fabrication Facility (NFF) and E-pack Lab in HKUST for technical support to accomplish the fabrication and characterization in this work. The authors would also like to thank Dr. Zhibo Sun, and Prof. Jr-Hau He from CityU of Hong Kong for their valuable discussion.
  • Received Date: 2024-04-12
  • Accepted Date: 2024-07-15
  • Rev Recd Date: 2024-07-02
  • Available Online: 2024-08-14
  • The issue of brightness in strong ambient light conditions is one of the critical obstacles restricting the application of augmented reality (AR) and mixed reality (MR). Gallium nitride (GaN)-based micro-LEDs, renowned for their exceptional brightness and stability, are considered the foremost contenders for AR applications. Nevertheless, conventional heteroepitaxial growth micro-LED devices confront formidable challenges, including substantial wavelength shifts and efficiency droop. In this paper, we firstly demonstrated the high-quality homoepitaxial GaN-on-GaN micro-LEDs micro-display, and thoroughly analyzed the possible benefits for free-standing GaN substrate from the material-level characterization to device optoelectronic properties and micro-display application compared with sapphire substrate. The GaN-on-GaN structure exhibits a superior crystal quality with ultra-low threading dislocation densities (TDDs) of ~ 105 cm−2, which is three orders of magnitude lower than that of GaN-on-Sapphire. Through an in-depth size-dependent optoelectronic analysis of blue/green emission GaN-on-GaN/ Sapphire micro-LEDs from 100 × 100 shrink to 3 × 3 μm2, real that a lower forward voltage and series resistance, a consistent emission wavelength (1.21 nm for blue and 4.79 nm for green @ 500 A/cm2), coupled with a notable reduction in efficiency droop ratios (15.6% for blue and 28.5% for green @ 500 A/cm2) and expanded color gamut (103.57% over Rec. 2020) within GaN-on-GaN 10 μm micro-LEDs. Last but not least, the GaN-on-GaN micro-display with 3000 pixels per inch (PPI) showcased enhanced display uniformity and higher luminance in comparison to its GaN-on-Sapphire counterpart, demonstrating significant potentials for high-brightness AR/MR applications under strong ambient light.
  • loading
  • [1]
    Liu Z, Lin CH, Hyun BR, Sher CW, Lv Z, Luo B, et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl. 2020;9(1):83.
    [2]
    Peng D, Zhang K, Liu Z. Design and Fabrication of fine-pitch pixelated-addressed micro-LED Arrays on printed circuit board for display and communication applications. IEEE J Electron Devices Soc. 2017;5(1):90–4.
    [3]
    Liu Z, Chong WC, Wong KM, Lau KM. GaN-based LED micro-displays for wearable applications. Microelectron Eng. 2015;148:98–103.
    [4]
    Huang Y, Hsiang EL, Deng MY, Wu ST. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl. 2020;9(1):105.
    [5]
    Wu T, Sher CW, Lin Y, Lee CF, Liang S, Lu Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci. 2018;8(9):1557.
    [6]
    Lan HY, Tseng IC, Lin YH, Lin GR, Huang DW, Wu CH. High-speed integrated micro-LED array for visible light communication. Opt Lett. 2020;45(8):2203.
    [7]
    Xie E, He X, Islim MS, Purwita AA, McKendry JJD, Gu E, et al. High-speed visible light communication based on a III-nitride series-biased micro-LED array. J Lightwave Technol. 2019;37(4):1180–6.
    [8]
    Liu X, Wang L, Zhang C, Liu C, Lv Z, Liu Z, et al. Micro-LED with red-green-blue super-pixel integration for simultaneous display and optical near field communication. Opt Express. 2022;30(14):24889.
    [9]
    Lee JH, Ahn Y, Lee HE, Jang YN, Park AY, Kim S, et al. Wearable surface-lighting micro-light-emitting diode patch for melanogenesis inhibition. Adv Healthcare Materials. 2023;12(1):2201796.
    [10]
    Lee HE, Shin JH, Park JH, Hong SK, Park SH, Lee SH, et al. Micro light-emitting diodes for display and flexible biomedical applications. Adv Funct Materials. 2019;29(24):1808075.
    [11]
    Yin K, Hsiang EL, Zou J, Li Y, Yang Z, Yang Q, et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl. 2022;11(1):161.
    [12]
    Lee YH, Zhan T, Wu ST. Prospects and challenges in augmented reality displays. Virtual Real Intell Hardware. 2019;1(1):10–20.
    [13]
    Dai Q, Shan Q, Cho J, Schubert EF, Crawford MH, Koleske DD, et al. On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms. Appl Phys Lett. 2011;98(3):033506.
    [14]
    Piprek J. Efficiency droop in nitride-based light-emitting diodes. Physica Status Solidi (a). 2010;207(10):2217–25.
    [15]
    Vampola KJ, Iza M, Keller S, DenBaars SP, Nakamura S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl Phys Lett. 2009;94(6):061116.
    [16]
    Akita K, Nakamura T, Hirayama H. Advantages of GaN substrates in InAlGaN quaternary ultraviolet-light-emitting diodes. Jpn J Appl Phys. 2004;43(12):8030–1.
    [17]
    Li G, Wang W, Yang W, Lin Y, Wang H, Lin Z, et al. GaN-based light-emitting diodes on various substrates: a critical review. Rep Prog Phys. 2016;79(5):056501.
    [18]
    Miskys CR, Kelly MK, Ambacher O, Stutzmann M. Freestanding GaN-substrates and devices. Phys Stat Sol (c). 2003;6:1627–50.
    [19]
    Li Z, Liu Y, Feng F, Zhanghu M, Kwok HS, Liu Z. –3: Exploring the temperature dependence of GaN-on-GaN homoepitaxy micro-LEDs. Symp Digest of Tech Papers. 2023;54(1):406–9.
    [20]
    Mukai T, Takekawa K, Nakamura S. InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn J Appl Phys. 1998;37(7B):L839.
    [21]
    Akita K, Kyono T, Yoshizumi Y, Kitabayashi H, Katayama K. Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates. J Appl Phys. 2007;101(3):033104.
    [22]
    Liu Z, Wei T, Guo E, Yi X, Wang L, Wang J, et al. Efficiency droop in InGaN/GaN multiple-quantum-well blue light-emitting diodes grown on free-standing GaN substrate. Appl Phys Lett. 2011;99(9):091104.
    [23]
    Chao C-L, Xuan R, Yen H-H, Chiu C-H, Fang Y-H, Li Z-Y, et al. Reduction of efficiency droop in InGaN Light-emitting diode grown on self-separated freestanding GaN substrates. IEEE Photon Technol Lett. 2011;23(12):798–800.
    [24]
    Kim DH, Park YS, Kang D, Kim KK, Seong TY, Amano H. Combined effects of V pits and chip size on the electrical and optical properties of green InGaN-based light-emitting diodes. J Alloy Compd. 2019;796:146–52.
    [25]
    Liou JK, Liu YJ, Chen CC, Chou PC, Hsu WC, Liu WC. On a GaN-based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface. IEEE Electron Device Lett. 2012;33(2):227–9.
    [26]
    Koike K, Lee S, Cho SR, Park J, Lee H, Ha JS, et al. Improvement of Light extraction efficiency and reduction of leakage current in GaN-based LED via V-Pit formation. IEEE Photon Technol Lett. 2012;24(6):449–51.
    [27]
    Zhou S, Liu S, Ding H. Enhancement in light extraction of LEDs with SiO2 current blocking layer deposited on naturally textured p-GaN surface. Opt Laser Technol. 2013;47:127–30.
    [28]
    Okada N, Kashihara H, Sugimoto K, Yamada Y, Tadatomo K. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes. J Appl Phys. 2015;117(2):025708.
    [29]
    Wu X, Liu J, Jiang F. Hole injection from the sidewall of V-shaped pits into c -plane multiple quantum wells in InGaN light emitting diodes. J Appl Phys. 2015;118(16):164504.
    [30]
    Kim J, Cho YH, Ko DS, Li XS, Won JY, Lee E, et al. Influence of V-pits on the efficiency droop in InGaN/GaN quantum wells. Opt Express. 2014;22(S3):A857.
    [31]
    Tomiya S, Kanitani Y, Tanaka S, Ohkubo T, Hono K. Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits. Appl Phys Lett. 2011;98(18):181904.
    [32]
    Kim J, Kim J, Tak Y, Chae S, Kim JY, Park Y. Effect of V-shaped Pit size on the reverse leakage current of InGaN/GaN light-emitting diodes. IEEE Electron Device Lett. 2013;34(11):1409–11.
    [33]
    Chang CY, Li H, Shih YT, Lu TC. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells. Appl Phys Lett. 2015;106(9):091104.
    [34]
    Zhou S, Liu X, Yan H, Gao Y, Xu H, Zhao J, et al. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes. Sci Rep. 2018;8(1):11053.
    [35]
    Samsudin MEA, Alias EA, Md Taib MI, Li H, Iza M, Denbaars SP, et al. Limiting factors of GaN-on-GaN LED. Semicond Sci Technol. 2021;36(9):095035.
    [36]
    Romanitan C, Mihalache I, Tutunaru O, Pachiu C. Effect of the lattice mismatch on threading dislocations in heteroepitaxial GaN layers revealed by X-ray diffraction. J Alloy Compd. 2021;858:157723.
    [37]
    Davydov VYu, Kitaev YuE, Goncharuk IN, Smirnov AN, Graul J, Semchinova O, et al. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B. 1998;58(19):12899–907.
    [38]
    James Singh K, Huang YM, Ahmed T, Liu AC, Huang Chen SW, Liou FJ, et al. Micro-LED as a promising candidate for high-speed visible light communication. Appl Sci. 2020;10(20):7384.
    [39]
    Liu Y, Zhang K, Feng F, Chan K, Yeung S, Kwok H, et al. The size and temperature effect of ideality factor in GaN/InGaN multiple quantum wells micro-light-emitting diodes. J Soc Info Display. 2021;29(12):948–60.
    [40]
    Zhu D, Xu J, Noemaun AN, Kim JK, Schubert EF, Crawford MH, et al. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett. 2009;94(8):081113.
    [41]
    Liu Y, Zhanghu M, Feng F, Li Z, Zhang K, Kwok HS, et al. Identifying the role of carrier overflow and injection current efficiency in a GaN-based micro-LED efficiency droop model. Opt Express. 2023;31(11):17557.
    [42]
    Han DP, Kim H, Shim JI, Shin DS, Kim KS. Influence of carrier overflow on the forward-voltage characteristics of InGaN-based light-emitting diodes. Appl Phys Lett. 2014;105(19):191114.
    [43]
    Sang L, Ren B, Endo R, Masuda T, Yasufuku H, Liao M, et al. Boosting the doping efficiency of Mg in p -GaN grown on the free-standing GaN substrates. Appl Phys Lett. 2019;115(17):172103.
    [44]
    Wang L, Jin J, Mi C, Hao Z, Luo Y, Sun C, et al. A Review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes. Materials. 2017;10(11):1233.
    [45]
    Shim JI, Shin DS. Measuring the internal quantum efficiency of light-emitting diodes: towards accurate and reliable room-temperature characterization. Nanophotonics. 2018;7(10):1601–15.
    [46]
    Olivier F, Daami A, Licitra C, Templier F. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl Phys Lett. 2017;111(2):022104.
    [47]
    Jeong H, Salas-Montiel R, Lerondel G, Jeong MS. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns. Sci Rep. 2017;7(1):45726.
    [48]
    Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H, Hiroshi Amano HA, et al. Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn J Appl Phys. 1997;36(4A):L382.
    [49]
    Tsai SC, Lu CH, Liu CP. Piezoelectric effect on compensation of the quantum-confined Stark effect in InGaN/GaN multiple quantum wells based green light-emitting diodes. Nano Energy. 2016;28:373–9.
    [50]
    Li JZ, Tao YB, Chen ZZ, Jiang XZ, Fu XX, Jiang S, et al. Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template. Chinese Phys B. 2014;23(1):016101.
    [51]
    Horng RH, Ye CX, Chen PW, Iida D, Ohkawa K, Wu YR, et al. Study on the effect of size on InGaN red micro-LEDs. Sci Rep. 2022;12(1):1324.
    [52]
    Liu Y, Zhang K, Hyun BR, Kwok HS, Liu Z. High-brightness InGaN/GaN micro-LEDs with secondary peak effect for displays. IEEE Electron Device Lett. 2020;41(9):1380–3.
    [53]
    Wang L, Lu C, Lu J, Liu L, Liu N, Chen Y, et al. Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes. Opt Express. 2011;19(15):14182.
    [54]
    Robertson AR, The CIE. color-difference formulae. Color Res Appl. 1977;2(1):7–11.
    [55]
    Melgosa M, Hita E, Romero J, del Barco LJ. Color-discrimination thresholds translated from the CIE (x, y, y) space to the CIE 1976 (l*, a*, b*). Color Res Appl. 1994;19(1):10–8.
    [56]
    Perduijn A, De Krijger S, Claessens J, Kaito N, Yagi T, Hsu ST, et al. 43.2: Light output feedback solution for RGB LED backlight applications. Symp Digest of Tech Papers. 2003;34(1):1254–7.
    [57]
    Lu B, Wang Y, Hyun BR, Kuo HC, Liu Z. Color difference and thermal stability of flexible transparent InGaN/GaN Multiple quantum wells mini-LED arrays. IEEE Electron Device Lett. 2020;41(7):1040–3.
    [58]
    Xu F, Wang G, Tao T, Zhuang Z, Yan QA, Zhi T, et al. Optimized InGaN/GaN Quantum structure for high-efficiency micro-LEDs displays with low current injection. IEEE Trans Electron Devices. 2023;70(8):4257–63.
    [59]
    Chen CJ, Chen HC, Liao JH, Yu CJ, Wu MC. Fabrication and characterization of active-matrix 960×540 blue GaN-based micro-LED display. IEEE J Quantum Electron. 2019;55(2):1–6.
    [60]
    Smith JM, Ley R, Wong MS, Baek YH, Kang JH, Kim CH, et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl Phys Lett. 2020;116(7):071102.
    [61]
    Liu Y, Feng F, Zhang K, Jiang F, Chan KW, Kwok HS, et al. Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based Micro-LEDs with pixel size down to 3 μm. J Phys D: Appl Phys. 2022;55(31):315107.
    [62]
    Kirilenko P, Iida D, Zhuang Z, Ohkawa K. InGaN-based green micro-LED efficiency enhancement by hydrogen passivation of the p-GaN sidewall. Appl Phys Express. 2022;15(8):084003.
    [63]
    Zhu S, Shan X, Lin R, Qiu P, Wang Z, Lu X, et al. Characteristics of GaN-on-Si green micro-LED for Wide color gamut display and high-speed visible light communication. ACS Photonics. 2023;10(1):92–100.
    [64]
    Shin Y, Park J, Bak BU, Min S, Shin DS, Park JB, et al. Investigation and direct observation of sidewall leakage current of InGaN-Based green micro-light-emitting diodes. Opt Express. 2022;30(12):21065.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (21) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return