Turn off MathJax
Article Contents
Lemin Jia, Wei Zheng, Feng Huang. Vacuum-ultraviolet photodetectors[J]. PhotoniX. doi: 10.1186/s43074-020-00022-w
Citation: Lemin Jia, Wei Zheng, Feng Huang. Vacuum-ultraviolet photodetectors[J]. PhotoniX. doi: 10.1186/s43074-020-00022-w

Vacuum-ultraviolet photodetectors

doi: 10.1186/s43074-020-00022-w
Funds:

This work is supported by the National Natural Science Foundation of China (NSFC) (61427901, 61604178, 91333207, U1505252).

  • Received Date: 2020-08-03
  • Accepted Date: 2020-10-25
  • Available Online: 2020-11-09
  • High-performance vacuum-ultraviolet (VUV) photodetectors are of great significance to space science, radiation monitoring, electronic industry and basic science. Due to the absolute advantages in VUV selective response and radiation resistance, ultra-wide bandgap semiconductors such as diamond, BN and AlN attract wide interest from researchers, and thus the researches on VUV photodetectors based on these emerging semiconductor materials have made considerable progress in the past 20 years. This paper takes ultra-wide bandgap semiconductor filterless VUV photodetectors with different working mechanisms as the object and gives a systematic review in the aspects of figures of merit, performance evaluation methods and research progress. These miniaturized and easily-integrated photodetectors with low power consumption are expected to achieve efficient VUV dynamic imaging and single photon detection in the future.
  • loading
  • [1]
    de Oliveira N, Joyeux D, Nahon L. Spectroscopy in the vacuum-ultraviolet. Nat Photonics. 2011;5:249.
    [2]
    Pile DFP. Vacuum-ultraviolet source. Nat Photonics. 2018;12(10):568.
    [3]
    Baker D, Kanekal S, Li X, Monk S, Goldstein J, Burch J. An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’solar storm in 2003. Nature. 2004;432(7019):878.
    [4]
    Guerrero MA, De Marco O. Analysis of far-UV data of central stars of planetary nebulae: Occurrence and variability of stellar winds. Astronomy Astrophysics. 2013;553:A126.
    [5]
    Gosling JT, Asbridge JR, Bame SJ, Feldman WC. Solar wind stream interfaces. J Geophys Res Space Physics. 1978;83(A4):1401–12.
    [6]
    Cane HV, Richardson IG. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J Geophysical Res Space Physics. 2003;108(A4):1156. https://doi.org/10.1029/2002JA009817.
    [7]
    Sibeck DG, Lopez RE, Roelof EC. Solar wind control of the magnetopause shape, location, and motion. J Geophys Res Space Physics. 1991;96(A4):5489–95.
    [8]
    Shea MA, Smart DF, McCracken KG, Dreschhoff GAM, Spence HE. Solar proton events for 450 years: the Carrington event in perspective. Adv Space Res. 2006;38(2):232–8.
    [9]
    BenMoussa A, Dammasch IE, Hochedez J-F, Schühle U, Koller S, Stockman Y, et al. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2. Astron Astrophys. 2009;508(2):1085–94.
    [10]
    Torr M, Torr D, Zukic M, Johnson R, Ajello J, Banks P, et al. A far ultraviolet imager for the international solar-terrestrial physics mission. Space Sci Rev. 1995;71(1–4):329–83.
    [11]
    Ishihara H, Sugio S, Kanno T, Matsuoka M, Hayashi KJS. Characterization of Photoconductive Diamond Detectors-- Candidate Vacuum Ultraviolet Radiation and Extreme Ultraviolet Radiation Light Source Detectors for Lithography. Sensors Mater. 2010;22(7):357–64.
    [12]
    Antonelli M, Di Fraia M, Carrato S, Cautero G, Menk RH, Jark WH, et al. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices. Nucl Instrum Methods Phys Res Section A: Accelerators, Spectrometers, Detectors Assoc Equip. 2013;730:164–7.
    [13]
    Venot O, Fray N, Bénilan Y, Gazeau M-C, Hébrard E, Larcher G, et al. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets. A&A. 2013;551:A131.
    [14]
    Moos HW, Cash WC, Cowie LL, Davidsen AF, Dupree AK, Feldman PD, et al. Overview of the far ultraviolet spectroscopic explorer Mission. Astrophys J Lett. 2000;538(1):L1.
    [15]
    BenMoussa A, Soltani A, Schühle U, Haenen K, Chong YM, Zhang WJ, et al. Recent developments of wide-bandgap semiconductor based UV sensors. Diam Relat Mater. 2009;18(5):860–4.
    [16]
    BenMoussa A, Hochedez JF, Schühle U, Schmutz W, Haenen K, Stockman Y, et al. Diamond detectors for LYRA, the solar VUV radiometer on board PROBA2. Diam Relat Mater. 2006;15(4):802–6.
    [17]
    McComas DJ, Christian ER, Cohen CMS, Cummings AC, Davis AJ, Desai MI, et al. Probing the energetic particle environment near the Sun. Nature. 2019;576(7786):223–7.
    [18]
    Kasper JC, Bale SD, Belcher JW, Berthomier M, Case AW, Chandran BDG, et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature. 2019;576(7786):228–31.
    [19]
    Howard RA, Vourlidas A, Bothmer V, Colaninno RC, DeForest CE, Gallagher B, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature. 2019;576(7786):232–6.
    [20]
    Bale SD, Badman ST, Bonnell JW, Bowen TA, Burgess D, Case AW, et al. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature. 2019;576(7786):237–42.
    [21]
    Hansen TE. Silicon UV-photodiodes using natural inversion layers. Phys Scr. 1978;18(6):471.
    [22]
    Korde R, Geist J. Quantum efficiency stability of silicon photodiodes. Appl Opt. 1987;26(24):5284–90.
    [23]
    Korde R, Geist J. Stable, high quantum efficiency, UV-enhanced silicon photodiodes by arsenic diffusion. Solid·State Electron. 1987;30(1):89–92.
    [24]
    Shizuo F. Wide-bandgap semiconductor materials: for their full bloom. Jpn J Appl Phys. 2015;54(3):030101.
    [25]
    Zheng W, Huang F, Zheng R, Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) Photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv Mater. 2015;27(26):3921–7.
    [26]
    Zheng W, Jia L, Huang F. Vacuum-Ultraviolet Photon Detections. iScience. 2020;23(6):101145.
    [27]
    Zheng W, Lin R, Zhu Y, Zhang Z, Ji X, Huang F. Vacuum ultraviolet Photodetection in two-dimensional oxides. ACS Appl Mater Interfaces. 2018;10(24):20696–702.
    [28]
    Sukhovatkin V, Hinds S, Brzozowski L, Sargent EH. Colloidal quantum-dot Photodetectors exploiting Multiexciton generation. Science. 2009;324(5934):1542–4.
    [29]
    Zheng W, Xiong X, Lin R, Zhang Z, Xu C, Huang F. Balanced Photodetection in one-step liquid-phase-synthesized CsPbBr3 micro−/Nanoflake single crystals. ACS Appl Mater Interfaces. 2018;10(2):1865–70.
    [30]
    Pace E, Di Benedetto R, Scuderi S. Fast stable visible-blind and highly sensitive CVD diamond UV photodetectors for laboratory and space applications. Diam Relat Mater. 2000;9(3):987–93.
    [31]
    Alison M. Recent developments of diamond detectors for particles and UV radiation. Semicond Sci Technol. 2000;15(9):R55.
    [32]
    Fahrner WR, Job R, Werner M. Sensors and smart electronics in harsh environment applications. Microsyst Technol. 2001;7(4):138–44.
    [33]
    Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol. 2003;18(4):R33.
    [34]
    Hochedez JF, Verwichte E, Bergonzo P, Guizard B, Mer C, Tromson D, et al. Future Diamond UV Imagers For Solar Physics. Physica Status Solidi (a). 2000;181(1):141–9.
    [35]
    McKeag RD, Jackman RB. Diamond UV photodetectors: sensitivity and speed for visible blind applications. Diam Relat Mater. 1998;7(2):513–8.
    [36]
    Barberini L, Cadeddu S, Caria M. A new material for imaging in the UV: CVD diamond. Nucl Instrum Methods Physics Res Section A: Accelerators, Spectrometers, Detectors Assoc Equipment. 2001;460(1):127–37.
    [37]
    Teraji T, Yoshizaki S, Wada H, Hamada M, Ito T. Highly sensitive UV photodetectors fabricated using high-quality single-crystalline CVD diamond films. Diam Relat Mater. 2004;13(4):858–62.
    [38]
    Kaneko JH, Teraji T, Hirai Y, Shiraishi M, Kawamura S, Yoshizaki S, et al. Response function measurement of layered type CVD single crystal diamond radiation detectors for 14 MeV neutrons. Rev Sci Instrum. 2004;75(10):3581–4.
    [39]
    Solozhenko VL, Turkevich VZ, Holzapfel WB. Refined phase diagram of boron nitride. J Phys Chem B. 1999;103(15):2903–5.
    [40]
    Miyata N, Moriki K, Mishima O, Fujisawa M, Hattori T. Optical constants of cubic boron nitride. Phys Rev B. 1989;40(17):12028–9.
    [41]
    Spear KE. Diamond—ceramic coating of the future. J Am Ceram Soc. 1989;72(2):171–91.
    [42]
    Noor Mohammad S. Electrical characteristics of thin film cubic boron nitride. Solid·State Electron. 2002;46(2):203–22.
    [43]
    Kalish R. Doping of diamond. Carbon. 1999;37(5):781–5.
    [44]
    Zhang WJ, Chong YM, Bello I, Lee ST. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J Phys D Appl Phys. 2007;40(20):6159.
    [45]
    Samantaray CB, Singh RN. Review of synthesis and properties of cubic boron nitride (c-BN) thin films. Int Mater Rev. 2005;50(6):313–44.
    [46]
    Watanabe K, Taniguchi T, Niiyama T, Miya K, Taniguchi M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat Photonics. 2009;3:591.
    [47]
    Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics. 2016;10:262.
    [48]
    Sajjad M, Jadwisienczak WM, Feng P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale. 2014;6(9):4577–82.
    [49]
    Meng JH, Zhang XW, Wang HL, Ren XB, Jin CH, Yin ZG, et al. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition. Nanoscale. 2015;7(38):16046–53.
    [50]
    Wang H, Zhang X, Liu H, Yin Z, Meng J, Xia J, et al. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition. Adv Mater. 2015;27(48):8109–15.
    [51]
    Aldalbahi A, Feng P. Development of 2-D boron nitride Nanosheets UV photoconductive detectors. IEEE Trans Electron Devices. 2015;62(6):1885–90.
    [52]
    Zhou AF, Aldalbahi A, Feng P. Vertical metal-semiconductor-metal deep UV photodetectors based on hexagonal boron nitride nanosheets prepared by laser plasma deposition. Optical Mater Express. 2016;6(10):3286–92.
    [53]
    Rivera M, Velázquez R, Aldalbahi A, Zhou AF, Feng P. High Operating Temperature and Low Power Consumption Boron Nitride Nanosheets Based Broadband UV Photodetector. Sci Rep. 2017;7:42973.
    [54]
    Onuma T, Hazu K, Uedono A, Sota T, Chichibu SF. Identification of extremely radiative nature of AlN by time-resolved photoluminescence. Appl Phys Lett. 2010;96(6):061906.
    [55]
    Lin R, Zheng W, Chen L, Zhu Y, Xu M, Ouyang X, et al. X-ray radiation excited ultralong (> 20,000 seconds) intrinsic phosphorescence in aluminum nitride single-crystal scintillators. Nat Commun. 2020;11(1):1–8.
    [56]
    Zhu Y, Lin R, Zheng W, Ran J, Huang FJSB. Near vacuum-ultraviolet aperiodic oscillation emission of AlN films; 2020.
    [57]
    Li J, Oder TN, Nakarmi ML, Lin JY, Jiang HX. Optical and electrical properties of mg-doped p-type AlxGa1−xN. Appl Phys Lett. 2002;80(7):1210–2.
    [58]
    Li J, Nam KB, Nakarmi ML, Lin JY, Jiang HX. Band-edge photoluminescence of AlN epilayers. Appl Phys Lett. 2002;81(18):3365–7.
    [59]
    Li J, Nam KB, Nakarmi ML, Lin JY, Jiang HX, Carrier P, et al. Band structure and fundamental optical transitions in wurtzite AlN. Appl Phys Lett. 2003;83(25):5163–5.
    [60]
    Nam KB, Li J, Nakarmi ML, Lin JY, Jiang HX. Deep ultraviolet picosecond time-resolved photoluminescence studies of AlN epilayers. Appl Phys Lett. 2003;82(11):1694–6.
    [61]
    Zhang JP, Chitnis A, Adivarahan V, Wu S, Mandavilli V, Pachipulusu R, et al. Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm. Appl Phys Lett. 2002;81(26):4910–2.
    [62]
    Li Y, Zheng W, Huang FJP. All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX. 2020;1:1–11.
    [63]
    Li Y, Guo J, Zheng W, Huang F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl Physics Lett. 2020;117(2):023504.
    [64]
    Rachko ZA, Valbis JA. Luminescence of Free and Relaxed Excitons in MgO. Physica Status Solidi (b). 1979;93(1):161–6.
    [65]
    Remes Z, Petersen R, Haenen K, Nesladek M, D’Olieslaeger M. Mechanism of photoconductivity in intrinsic epitaxial CVD diamond studied by photocurrent spectroscopy and photocurrent decay measurements. Diam Relat Mater. 2005;14(3):556–60.
    [66]
    Balducci A, Marinelli M, Milani E, Morgada ME, Tucciarone A, Verona-Rinati G, et al. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl Phys Lett. 2005;86(19):193509.
    [67]
    Uchida K, Ishihara H, Nippashi K, Matsuoka M, Hayashi K. Measurement of vacuum ultraviolet radiation with diamond photo detectors. J Light Vis Eng. 2004;28(2):97.
    [68]
    Saito T, Hayashi K, Ishihara H, Saito I. Characterization of photoconductive diamond detectors as a candidate of FUV/VUV transfer standard detectors. Metrologia. 2006;43(2):S51.
    [69]
    Richter M, Kroth U, Gottwald A, Gerth C, Tiedtke K, Saito T, et al. Metrology of pulsed radiation for 157-nm lithography. Appl Opt. 2002;41(34):7167–72.
    [70]
    Saito T, Hayashi K. Spectral responsivity measurements of photoconductive diamond detectors in the vacuum ultraviolet region distinguishing between internal photocurrent and photoemission current. Appl Phys Lett. 2005;86(12):122113.
    [71]
    Liu Z, Ao J-P, Li F, Wang W, Wang J, Zhang J, et al. Fabrication of three dimensional diamond ultraviolet photodetector through down-top method. Appl Phys Lett. 2016;109(15):153507.
    [72]
    Shi X, Yang Z, Yin S, Zeng H. Al plasmon-enhanced diamond solar-blind UV photodetector by coupling of plasmon and excitons. Mater Technol. 2016;31(9):544–7.
    [73]
    Liu K, Dai B, Ralchenko V, Xia Y, Quan B, Zhao J, et al. Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity. Sens. Actuators, A. 2017;259:121–6.
    [74]
    Lin C-N, Lu Y-J, Yang X, Tian Y-Z, Gao C-J, Sun J-L, et al. Diamond-based all-carbon Photodetectors for solar-blind imaging. Adv Opt Mater. 2018;6(15):1800068.
    [75]
    Liu S, Ye J, Cao Y, Shen Q, Liu Z, Qi L, et al. Tunable hybrid Photodetectors with Superhigh Responsivity. Small. 2009;5(21):2371–6.
    [76]
    Li L, Wu P, Fang X, Zhai T, Dai L, Liao M, et al. Single-crystalline CdS Nanobelts for excellent field-emitters and ultrahigh quantum-efficiency Photodetectors. Adv Mater. 2010;22(29):3161–5.
    [77]
    Fang X, Xiong S, Zhai T, Bando Y, Liao M, Gautam UK, et al. High-performance blue/ultraviolet-light-sensitive ZnSe-Nanobelt Photodetectors. Adv Mater. 2009;21(48):5016–21.
    [78]
    Alivisatos AP. Scaling law for structural metastability in semiconductor nanocrystals. Ber Bunsenges Phys Chem. 1997;101(11):1573–7.
    [79]
    Huang F, Banfield JF. Size-dependent phase transformation kinetics in Nanocrystalline ZnS. J Am Chem Soc. 2005;127(12):4523–9.
    [80]
    Zheng W, Lin R, Zhang Z, Huang F. Vacuum-ultraviolet Photodetection in few-layered h-BN. ACS Appl Mater Interfaces. 2018;10(32):27116–23.
    [81]
    Liao M, Koide Y, Alvarez J. Single Schottky-barrier photodiode with interdigitated-finger geometry: application to diamond. Appl Phys Lett. 2007;90(12):123507.
    [82]
    Almaviva S, Marinelli M, Milani E, Prestopino G, Tucciarone A, Verona C, et al. Extreme UV photodetectors based on CVD single crystal diamond in a p-type/intrinsic/metal configuration. Diam Relat Mater. 2009;18(1):101–5.
    [83]
    Almaviva S, Marinelli M, Milani E, Prestopino G, Tucciarone A, Verona C, et al. Extreme UV single crystal diamond Schottky photodiode in planar and transverse configuration. Diam Relat Mater. 2010;19(1):78–82.
    [84]
    Almaviva S, Marinelli M, Milani E, Prestopino G, Tucciarone A, Verona C, et al. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties. J Appl Physics. 2010;107(1):014511.
    [85]
    Iwakaji Y, Kanasugi M, Maida O, Ito T. Characterization of diamond ultraviolet detectors fabricated with high-quality single-crystalline chemical vapor deposition films. Appl Phys Lett. 2009;94(22):223511.
    [86]
    Mirkarimi PB, McCarty KF, Medlin DL. Review of advances in cubic boron nitride film synthesis. Mater Sci Eng. 1997;21(2):47–100.
    [87]
    Jiang X, Jia CL. Direct local Epitaxy of diamond on Si(100) and surface-roughening-induced crystal Misorientation. Phys Rev Lett. 2000;84(16):3658–61.
    [88]
    Feldermann H, Ronning C, Hofsäss H, Huang YL, Seibt M. Cubic boron nitride thin film heteroepitaxy. J Appl Phys. 2001;90(7):3248–54.
    [89]
    Walker J. Optical absorption and luminescence in diamond. Rep Prog Phys. 1979;42(10):1605.
    [90]
    Pascallon J, Stambouli V, Ilias S, Bouchier D, Nouet G, Silva F, et al. Microstructure of c-BN thin films deposited on diamond films. Diam Relat Mater. 1999;8(2):325–30.
    [91]
    Kester DJ, Ailey KS, Lichtenwalner DJ, Davis RF. Growth and characterization of cubic boron nitride thin films. J Vac Sci Technol A. 1994;12(6):3074–81.
    [92]
    Zhang W, Bello I, Lifshitz Y, Chan KM, Meng X, Wu Y, et al. Epitaxy on diamond by chemical vapor deposition: a route to high-quality cubic boron nitride for electronic applications. Adv Mater. 2004;16(16):1405–8.
    [93]
    Zhang WJ, Meng XM, Chan CY, Chan KM, Wu Y, Bello I, et al. Interfacial study of cubic boron nitride films deposited on diamond. J Phys Chem B. 2005;109(33):16005–10.
    [94]
    Zhang WJ, Bello I, Lifshitz Y, Chan KM, Wu Y, Chan CY, et al. Thick and adherent cubic boron nitride films grown on diamond interlayers by fluorine-assisted chemical vapor deposition. Appl Phys Lett. 2004;85(8):1344–6.
    [95]
    Soltani A, Barkad HA, Mattalah M, Benbakhti B, Jaeger J-CD, Chong YM, et al. 193nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors. Appl Phys Lett. 2008;92(5):053501.
    [96]
    Li J, Fan ZY, Dahal R, Nakarmi ML, Lin JY, Jiang HX. 200nm deep ultraviolet photodetectors based on AlN. Appl Phys Lett. 2006;89(21):213510.
    [97]
    BenMoussa A, Soltani A, Gerbedoen JC, Saito T, Averin S, Gissot S, et al. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations. Nucl. Instrum. Methods Phys. Res., Sect. B. 2013;312:48–53.
    [98]
    Tsai D-S, Lien W-C, Lien D-H, Chen K-M, Tsai M-L, Senesky DG, et al. Solar-blind Photodetectors for harsh electronics. Sci Rep. 2013;3:2628.
    [99]
    Pantha BN, Dahal R, Nakarmi ML, Nepal N, Li J, Lin JY, et al. Correlation between optoelectronic and structural properties and epilayer thickness of AlN. Appl Phys Lett. 2007;90(24):241101.
    [100]
    Nikishin S, Borisov B, Pandikunta M, Dahal R, Lin JY, Jiang HX, et al. High quality AlN for deep UV photodetectors. Appl Phys Lett. 2009;95(5):054101.
    [101]
    Tannous C, Leclerc G, Yelon A. Time-dependent photoconductivity in the presence of light-induced recombination: application to atactic polystyrene. J Phys Condens Matter. 1989;1(27):4367.
    [102]
    Shimakawa K, Inami S, Kato T, Elliott SR. Origin of photoinduced metastable defects in amorphous chalcogenides. Phys Rev B. 1992;46(16):10062–9.
    [103]
    Manikandan N, Asokan S. Signatures of an extended rigidity percolation in the photo-degradation behavior and the composition dependence of photo-response of Ge–Te–in glasses. J Non-Cryst Solids. 2008;354(31):3732–4.
    [104]
    BenMoussa A, Hochedez JF, Dahal R, Li J, Lin JY, Jiang HX, et al. Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44–360nm: photoemission assessments. Appl Phys Lett. 2008;92(2):022108.
    [105]
    BenMoussa A, Schühle U, Scholze F, Kroth U, Haenen K, Saito T, et al. Radiometric characteristics of new diamond PIN photodiodes. Meas Sci Technol. 2006;17(4):913–7.
    [106]
    BenMoussa A, Schühle U, Haenen K, Nesládek M, Koizumi S, Hochedez JF. PIN diamond detector development for LYRA, the solar VUV radiometer on board PROBA II. Physica Status Solidi (a). 2004;201(11):2536–41.
    [107]
    Zheng W, Lin R, Ran J, Zhang Z, Ji X, Huang F. Vacuum-Ultraviolet Photovoltaic Detector. ACS Nano. 2018;12(1):425–31.
    [108]
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706.
    [109]
    Chi On C, Okyay AK, Saraswat KC. Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors. IEEE Photon Technol Lett. 2003;15(11):1585–7.
    [110]
    Xu C, Du Z, Huang Y, Dong M, Lin R, Li Y, et al. Amorphous-MgGaO film combined with Graphene for vacuum-ultraviolet photovoltaic detector. ACS Appl Mater Interfaces. 2018;10(49):42681–7.
    [111]
    Dong M, Zheng W, Xu C, Lin R, Zhang D, Zhang Z, et al. Ultrawide-Bandgap amorphous MgGaO: nonequilibrium growth and vacuum ultraviolet application. Adv. Opt. Mater. 2019;7(3):1801272.
    [112]
    Wei M, Yao K, Liu Y, Yang C, Zang X, Lin L. A solar-blind UV detector based on Graphene-microcrystalline diamond Heterojunctions. Small. 2017;13(34):1701328.
    [113]
    Zheng W, Lin R, Zhang D, Jia L, Ji X, Huang F. Vacuum-ultraviolet photovoltaic detector with improved response speed and Responsivity via heating annihilation trap state mechanism. Adv. Opt. Mater. 2018;6(21):1800697.
    [114]
    Jia L, Zheng W, Lin R, Huang F. Ultra-high Photovoltage (2.45 V) Forming in Graphene Heterojunction via Quasi-Fermi Level Splitting Enhanced Effect. iScience. 2020;23(2):100818.
    [115]
    Zheng W, Lin R, Jia L, Huang F. Vacuum ultraviolet photovoltaic arrays. Photonics Res. 2019;7(1):98–102.
    [116]
    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 Photodetector. Adv Mater. 2018;30(43):1803165.
    [117]
    Michel J, Liu J, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics. 2010;4(8):527–34.
    [118]
    Stolterfoht M, Wolff CM, Márquez JA, Zhang S, Hages CJ, Rothhardt D, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat Energy. 2018;3(10):847–54.
    [119]
    Baker DN. How to cope with space weather. Science. 2002;297(5586):1486.
    [120]
    Mortet V, Soltani A. Impurity impact ionization avalanche in p-type diamond. Appl Phys Lett. 2011;99(20):202105.
    [121]
    Mortet V, Trémouilles D, Bulíř J, Hubík P, Heller L, Bedel-Pereira E, et al. Peculiarities of high electric field conduction in p-type diamond. Appl Phys Lett. 2016;108(15):152106.
    [122]
    Skukan N, Grilj V, Sudić I, Pomorski M, Kada W, Makino T, et al. Charge multiplication effect in thin diamond films. Appl Phys Lett. 2016;109(4):043502.
    [123]
    Hiraiwa A, Kawarada H. Figure of merit of diamond power devices based on accurately estimated impact ionization processes. J Appl Phys. 2013;114(3):034506.
    [124]
    Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory. Phys Rev B. 2001;64(4):045208.
    [125]
    Park CH, Cheong B-H, Lee K-H, Chang KJ. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys Rev B. 1994;49(7):4485–93.
    [126]
    Dahal R, Al Tahtamouni TM, Fan ZY, Lin JY, Jiang HX. Hybrid AlN–SiC deep ultraviolet Schottky barrier photodetectors. Appl Phys Lett. 2007;90(26):263505.
    [127]
    Dahal R, Al Tahtamouni TM, Lin JY, Jiang HX. AlN avalanche photodetectors. Appl Phys Lett. 2007;91(24):243503.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return