Turn off MathJax
Article Contents
Xiujuan Zou, Gaige Zheng, Quan Yuan, Wenbo Zang, Run Chen, Tianyue Li, Lin Li, Shuming Wang, Zhenlin Wang, Shining Zhu. Imaging based on metalenses[J]. PhotoniX. doi: 10.1186/s43074-020-00007-9
Citation: Xiujuan Zou, Gaige Zheng, Quan Yuan, Wenbo Zang, Run Chen, Tianyue Li, Lin Li, Shuming Wang, Zhenlin Wang, Shining Zhu. Imaging based on metalenses[J]. PhotoniX. doi: 10.1186/s43074-020-00007-9

Imaging based on metalenses

doi: 10.1186/s43074-020-00007-9
Funds:

The authors are grateful that this work was supported by the National Key R&D Program of China (2017YFA0303700, 2017YFA0303702, 2016YFA0202103), the National Natural Science Foundation of China (No. 11822406, 11834007, 11774162, 11674166, 11674167, 11674168, 11621091, 11774164, 91850204).

  • Received Date: 2020-01-03
  • Accepted Date: 2020-02-07
  • Available Online: 2020-03-04
  • Metalens, a prominent application of two-dimensional metasurfaces, has demonstrated powerful abilities even beyond traditional optical lenses. By manipulating the phase distribution of metalens composed of appropriately arranged nanoscale building blocks, the wavefront of incident wave can be controlled based on Huygens principle, thus achieving the desired reflected and transmitted wave for many different purposes. Metalenses will lead a revolution in optical imaging due to its flat nature and compact size, multispectral acquisition and even off-axis focusing. Here, we review the recent progress of metalenses presenting excellent properties, with a focus on the imaging application using these metalenses. We firstly discuss the mechanism for achieving metalenses with high efficiency, large numerical aperture, controlling the chromatic dispersion or monochromatic aberrations and large area fabrication. Then, we review several important imaging applications including wide-band focusing imaging, polarization dependent imaging, light field imaging and some other significant imaging systems in different areas. Finally, we make a conclusion with an outlook on the future development and challenges of this developing research field.
  • loading
  • [1]
    Abdelsalam M, Mahmoud AM, Swillam M. A polarization independent dielectric metasurface for infrared beam steering applications. Sci Rep. 2019;9:1–7.
    [2]
    Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T. On-chip wavefront shaping with dielectric metasurface. Nat Commun. 2019;10:1–7.
    [3]
    Zhou J, Qian H, Luo H, Wen S, Liu Z. A spin controlled wavefront shaping metasurface with low dispersion in visible frequencies. Nanoscale. 2019;11:17111–9.
    [4]
    Bukhari SS, Vardaxoglou J, Whittow W. A Metasurfaces review: definitions and applications. Appl Sci. 2019;9:2727.
    [5]
    Dharmavarapu R, Ki I, Katayama I, Ng SH, Vongsvivut J, Tobin MJ, Kuchmizhak A, Nishijima Y, Bhattacharya S, Juodkazis S. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics. 2019;8:1263–70.
    [6]
    Meng X, Wu J, Wu Z, Yang L, Huang L, Li X, Qu T. Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum. Opt Lett. 2019;44:1452–5.
    [7]
    Chen Y, Yang X, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci Appl. 2018;7:84.
    [8]
    Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339:1232009.
    [9]
    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science. 2014;343:160–3.
    [10]
    Strikwerda AC, Sleasman T, Anderson W, Awadallah RI. Sub-wavelength focusing in inhomogeneous media with a Metasurface near field plate. Sensors. 2019;19:4534.
    [11]
    Epstein A, Eleftheriades GV. Huygens' metasurfaces via the equivalence principle: design and applications. J Opt Soc Am B - Opt Phys. 2016;33:A31–50.
    [12]
    Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components. Science. 2017;358:eaam8100.
    [13]
    Pfeiffer C, Grbic A. Controlling vector Bessel beams with Metasurfaces. Phys Rev Appl. 2014;2:044012.
    [14]
    Yang J, Wang J, Feng M, Li Y, Wang X, Zhou X, Cui T, Qu S. Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons. Appl Phys Lett. 2017;110:203507.
    [15]
    Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics. 2015;9:180.
    [16]
    Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science. 2012;335:427.
    [17]
    Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, Liao CY, Hsu WL, Lin HT, Sun S, Zhou L, Liu AQ, Tsai DP. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014;14:225–30.
    [18]
    Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-Reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 2014;14:1394–9.
    [19]
    Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur SN, de Lustrac A, Wu Q, Qiu CW, Alu A. Ultrathin Pancharatnam-berry Metasurface with maximal cross-polarization efficiency. Adv Mater. 2015;27:1195–200.
    [20]
    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J Appl Phys. 2014;115:154504.
    [21]
    Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, Li YB, Jiang M, Qiu CW, Zhang S. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8:197.
    [22]
    Wang B, Dong F, Li QT, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao YF, Gong Q, Li Y. Visible-frequency dielectric Metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 2016;16:5235–40.
    [23]
    Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev DN, Kivshar YS. Grayscale transparent metasurface holograms. Optica. 2016;3:1504–5.
    [24]
    Huang L, Chen X, Muehlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-W. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun. 2013;4:2808.
    [25]
    Huang Y-W, Chen WT, Tsai W-Y, Wu PC, Wang C-M, Sun G, Tsai DP. Aluminum Plasmonic Multicolor Meta-Hologram. Nano Lett. 2015;15:3122–7.
    [26]
    Huang L, Chen X, Muehlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah KW, Qiu CW, Li J, Zentgraf T, Zhang S. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv. 2016;2:e1601102.
    [27]
    Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science. 2015;349:1310–4.
    [28]
    Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li KF, Wong PWH, Cheah KW, Pun EYB, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nat Commun. 2015;6:8241.
    [29]
    Yu YF, Zhu AY, Paniagua-Dominguez R, Fu YH, Luk'yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2 phase control at visible wavelengths. Laser Photon Rev. 2015;9:412–8.
    [30]
    Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Sci Rep. 2015;5:10365.
    [31]
    Xu JJ, Zhang HC, Zhang Q, Cui TJ. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl Phys Lett. 2015;106:021102.
    [32]
    Costantini D, Lefebvre A, Coutrot AL, Moldovan-Doyen I, Hugonin JP, Boutami S, Marquier F, Benisty H, Greffet JJ. Plasmonic Metasurface for directional and frequency-selective thermal emission. Phys Rev Appl. 2015;4:014023.
    [33]
    Burokur SN, DanielJP RP, de Lustrac A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl Phys Lett. 2010;97:064101.
    [34]
    Aoni RA, Rahmani M, Xu L, Kamali KZ, Komar A, Yen J, Neshev D, Miroshnichenko AE. High-efficiency visible light manipulation using dielectric Metasurfaces. Sci Rep. 2019;9:6510.
    [35]
    Cheng K, Wei Z, Fan Y, Zhang X, Wu C, Li H. Realizing broadband transparency via manipulating the hybrid coupling modes in Metasurfaces for High-efficiency Metalens. Adv Opt Mater. 2019;7:1900016.
    [36]
    Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin hall effect at metasurfaces. Science. 2013;339:1405–7.
    [37]
    Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012;12:6328–33.
    [38]
    Wen D, Yue F, Ardron M, Chen X. Multifunctional metasurface lens for imaging and Fourier transform. Sci Rep. 2016;6:27628.
    [39]
    Vo S, Fattal D, Sorin WV, Peng Z, Tho T, Fiorentino M, Beausoleil RG. Sub-wavelength grating lenses with a twist. IEEE Photon Technol Lett. 2014;26:1375–8.
    [40]
    Zheng G, Muehlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotech. 2015;10:308–12.
    [41]
    Arbabi A, Briggs RM, Horie Y, Bagheri M, Faraon A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt Express. 2015;23:33310–7.
    [42]
    Cai W, Shalaev V. Optical properties of metal-dielectric composites. New York: Optical Metamaterials Springer; 2010. p. 11–37.
    [43]
    Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312:1780–2.
    [44]
    Huang L, Chen X, Muehlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012;12:5750–5.
    [45]
    Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S. Broadband Metasurfaces with simultaneous control of phase and amplitude. Adv Mater. 2014;26:5031–6.
    [46]
    Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012;12(9):4932–6.
    [47]
    Aieta F, Genevet P, Yu N, Kats MA, Gaburro Z, Capasso F. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 2012;12(3):1702–6.
    [48]
    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater. 2013;25:4567–72.
    [49]
    Decker M, Chen WT, Nobis T, Zhu AY, Khorasaninejad M, Bharwani Z, Capasso F, Petschulat J. Imaging performance of polarization-insensitive metalenses. ACS Photonics. 2019;6:1493–9.
    [50]
    Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on Plasmonic gradient Metasurfaces. Nano Lett. 2013;13:829–34.
    [51]
    Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun. 2015;6:7069.
    [52]
    Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
    [53]
    Zhang S, Soibel A, Keo SA, Wilson D, Rafol SB, Ting DZ, She A, Gunapala SD, Capasso F. Solid-immersion metalenses for infrared focal plane arrays. Appl Phys Lett. 2018;113:111104.
    [54]
    Fan ZB, Shao ZK, Xie MY, Pang XN, Ruan WS, Zhao FL, Chen YJ, Yu SY, Dong JW. Silicon nitride Metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys Rev Appl. 2018;10:014005.
    [55]
    Paniagua-Domínguez R, Yu YF, Khaidarov E, Choi S, Leong V, Bakker RM, Liang X, Fu YH, Valuckas V, Krivitsky LA, Kuznetsov AI. A Metalens with a near-Unity numerical aperture. Nano Lett. 2018;18:2124–32.
    [56]
    Chen WT, Zhu AY, Khorasaninejad M, Shi Z, Sanjeev V, Capasso F. Immersion meta-lenses at visible wavelengths for Nanoscale imaging. Nano Lett. 2017;17:3188–94.
    [57]
    Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, Liu L, Yu X, Zhou J, Krauss TF, Li J. Ultrahigh numerical aperture Metalens at visible wavelengths. Nano Lett. 2018;18:4460–6.
    [58]
    Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Multiwavelength metasurfaces through spatial multiplexing. Sci Rep. 2016;6:32803.
    [59]
    Avayu O, Almeida E, Prior Y, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun. 2017;8:14992.
    [60]
    Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica. 2017;4:625–32.
    [61]
    Wang S, Wu PC, Su V-C, Lai Y-C, Chu CH, Chen J-W, Lu S-H, Chen J, Xu B, Kuan C-H, Li T, Zhu S, Tsai DP. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8:187.
    [62]
    Hsiao H-H, Chen YH, Lin RJ, Wu PC, Wang S, Chen BH, Tsai DP. Integrated resonant unit of Metasurfaces for broadband efficiency and phase manipulation. Adv Opt Mater. 2018;6:1800031.
    [63]
    Meem M, Banerji S, Majumder A, Vasquez FG, Sensale-Rodriguez B, Menon R. Broadband lightweight flat lenses for long-wave infrared imaging. Proc Natl Acad Sci U S A. 2019;116:21375–8.
    [64]
    High AA, Devlin RC, Dibos A, Polking M, Wild DS, Perczel J, de Leon NP, Lukin MD, Park H. Visible-frequency hyperbolic metasurface. Nature. 2015;522:192–6.
    [65]
    Aieta F, Genevet P, Kats M, Capasso F. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express. 2013;21:31530–9.
    [66]
    Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun. 2016;7:13682.
    [67]
    Groever B, Chen WT, Capasso F. Meta-Lens doublet in the visible region. Nano Lett. 2017;17:4902–7.
    [68]
    Gao D, Yang R, Gu C, Li J, Gao M, Lei Z, Zhang F. Conformal Cassegrain reflecting systems using meta-surfaces. J Phys D Appl Phys. 2019;52:235301.
    [69]
    Kingslake R. A history of the photographic lens. San Diego: Elsevier, Academic press Inc.; 1989.
    [70]
    Manek I, Ovchinnikov YB, Grimm R. Generation of a hollow laser beam for atom trapping using an axicon. Opt Commun. 1998;147:67–70.
    [71]
    McLeod JH. Axicons and their uses. JOSA. 1960;50(2):166–9.
    [72]
    She A, Zhang SY, Shian S, Clarke DR, Capasso F. Large area metalenses: design, characterization, and mass manufacturing. Opt Express. 2018;26:1573.
    [73]
    Colburn S, Zhan A, Majumdar A. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica. 2018;5:825–31.
    [74]
    Colburn S, Majumdar A. Simultaneous achromatic and Varifocal imaging with quartic Metasurfaces in the visible. ACS Photonics. 2020;7:120–7.
    [75]
    AietaF KMA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science. 2015;347:1342–5.
    [76]
    Hu J, Liu C-H, Ren X, Lauhon LJ, Odom TW. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano. 2016;10:10275–82.
    [77]
    Khorasaninejad M, Shi Z, Zhu AY, Chen WT, Sanjeev V, Zaidi A, Capasso F. Achromatic Metalens over 60 nm bandwidth in the visible and Metalens with reverse chromatic dispersion. Nano Lett. 2017;17:1819–24.
    [78]
    Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6.
    [79]
    Wang S, Wu PC, Su VC, Lai YC, Chen MK, Kuo HY, Chen BH, Chen YH, Huang TT, Wang JH, Lin RM, Kuan CH, Li T, Wang Z, Zhu S, Tsai DP. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13:227–32.
    [80]
    Hentschel M, Weiss T, Bagheri S, Giessen H. Babinet to the half: coupling of solid and inverse Plasmonic structures. Nano Lett. 2013;13:4428–33.
    [81]
    Chen WT, Zhu AY, Sisler J, Huang YW, Yousef KMA, Lee E, Qiu CW, Capasso F. Broadband achromatic Metasurface-refractive optics. Nano Lett. 2018;18:7801–8.
    [82]
    Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun. 2019;10:355.
    [83]
    Colburn S, Zhan A, Majumdar A. Metasurface optics for full-color computational imaging. Sci Adv. 2018;4:2114.
    [84]
    Yoon G, Lee D, Nam K, Rho J. Geometric metasurface enabling polarization independent beam splitting. Sci Rep. 2018;8:9486.
    [85]
    Lin D, Holsteen AL, Maguid E, Fan P, Kik PG, Hasman E, Brongersma ML. Polarization-independent metasurface lens employing the Pancharatnam-berry phase. Opt Express. 2018;26:24835–42.
    [86]
    Zhang X, Li X, Jin J, Pu M, Ma X, Luo J, Guo Y, Wang C, Luo X. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale. 2018;10:9304–10.
    [87]
    Ma W, Jia D, Yu X, Feng Y, Zhao Y. Reflective gradient metasurfaces for polarization-independent light focusing at normal or oblique incidence. Appl Phys Lett. 2016;108:071111.
    [88]
    Ozdemir A, Hayran Z, Takashima Y, Kurt H. Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric Huygens' metasurfaces. Opt Commun. 2017;401:46–53.
    [89]
    Heide F, Rouf M, Hullin MB, Labitzke B, Heidrich W, Kolb A. High-quality computational imaging through simple lenses. ACM Trans Graph. 2013;32:149–1.
    [90]
    Li W, Yin X, Liu Y, Zhang M. Computational imaging through chromatic aberration corrected simple lenses. J Mod Opt. 2017;64:2211–20.
    [91]
    Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–berry phase diffractive optics. Appl Phys Lett. 2003;82:328–30.
    [92]
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized Laws of reflection and refraction. Science. 2011;334:333–7.
    [93]
    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu CW, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3:1198.
    [94]
    Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C-W, Zentgraf T, Zhang S. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Advanced Opt Mater. 2013;1:517–21.
    [95]
    Khorasaninejad M, Chen WT, Zhu AY, Oh J, Devlin RC, Rousso D, Capasso F. Multispectral chiral imaging with a Metalens. Nano Lett. 2016;16:4595–600.
    [96]
    Rubin NA, D’Aversa G, Chevalier P, Shi Z, Chen WT, Capasso F. Matrix Fourier optics enables a compact full-stokes polarization camera. Science. 2019;365:1839.
    [97]
    Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Latorre Carmona P, Kaufmann RK, Lewis P, Disney MI, Vanderbilt V, Davis AB, Baret F, Jacquemoud S, Lyapustin A, Myneni RB. Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci. 2013;110:E185.
    [98]
    McNichols RJ, Cote GL. Optical glucose sensing in biological fluids: an overview. J Biomed Opt. 2000;5:5–17.
    [99]
    Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of stokes parameters. Optica. 2015;2:716–23.
    [100]
    Chen WT, Török P, Foreman MR, Liao CY, Tsai W-Y, Wu PR, Tsai DP. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology. 2016;27:224002.
    [101]
    Arbabi E, Kamali SM, Arbabi A, Faraon A. Full-stokes imaging Polarimetry using dielectric Metasurfaces. ACS Photonics. 2018;5:3132–40.
    [102]
    Lin RJ, Su VC, Wang S, Chen MK, Chung TL, Chen YH, Kuo HY, Chen JW, Chen J, Huang YT, Wang JH, Chu CH, Wu PC, Li T, Wang Z, Zhu S, Tsai DP. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol. 2019;14:227–31.
    [103]
    Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD, Liu L, Ren H, Wang QH, Dong JW. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl. 2019;8:67.
    [104]
    Guo Q, Shi ZJ, Huang YW, Alexanderd E, Qiu CW, Capassoa F, Zicklera T. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. PANS. 2019;116:22959–65.
    [105]
    Okano F, Hoshino H, Arai J, Yuyama I. Real-time pickup method for a three-dimensional image based on integral photography. Appl Opt. 1997;36:1598–603.
    [106]
    Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun. 2012;3:1205.
    [107]
    Mosk AP, Lagendijk A, Lerosey G, Fink M. Controlling waves in space and time for imaging and focusing in complex media. Nat Photonics. 2012;6:283–92.
    [108]
    Chen BH, Wu PC, Su V-C, Lai Y-C, Chu CH, Lee IC, Chen J-W, Chen YH, Lan Y-C, Kuan C-H, Tsai DP. GaN Metalens for pixel-level full-color routing at visible light. Nano Lett. 2017;17:6345–52.
    [109]
    Ma C, Liu Z. A super resolution metalens with phase compensation mechanism. Appl Phys Lett. 2010;96:183103.
    [110]
    Slobozhanyuk AP, Poddubny AN, Raaijmakers AJE, van den Berg CAT, Kozachenko AV, Dubrovina IA, Melchakova IV, Kivshar YS, Belov PA. Enhancement of magnetic resonance imaging with Metasurfaces. Adv Mater. 2016;28:1832–8.
    [111]
    Cheng Y, Zhou C, Wei Q, Wu D, Liu X. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens. Appl Phys Lett. 2013;103:224104.
    [112]
    Lemoult F, Fink M, Lerosey G. Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens. Wave Random Complex. 2011;21:614–27.
    [113]
    Schlickriede C, Waterman N, Reineke B, Georgi P, Li G, Zhang S, Zentgraf T. Imaging through nonlinear Metalens using second harmonic generation. Adv Mater. 2018;30:1703843.
    [114]
    Wang R, Wang B-Z, Gong Z-S, Ding X. Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies. Sci Rep. 2015;5:11131.
    [115]
    Zuo H, Choi D-Y, Gai X, Ma P, Xu L, Neshev DN, Zhang B, Luther-Davies B. High-efficiency all-dielectric Metalenses for mid-infrared imaging. Adv Opt Mater. 2017;5:1700585.
    [116]
    Jouvaud C, Ourir A, de Rosny J. Far-field imaging with a multi-frequency metalens. Appl Phys Lett. 2014;104:243507.
    [117]
    Pahlevaninezhad H, Khorasaninejad M, Huang YW, Shi Z, Hariri LP, Adams DC, Ding V, Zhu A, Qiu CW, Capasso F. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat Photonics. 2018;12:540–7.
    [118]
    Arbabi E, Li JQ, Hutchins RJ, Kamali SM, Arbabi A, Horie Y, Dorpe PV, Gradinaru V, Wagenaar DA, Faraon A. Two-photon microscopy with a double-wavelength Metasurface objective Lens. Nano Lett. 2018;18:4943–8.
    [119]
    Kwon H, Arbabi E, Kamali SM, Faraji-Dana M, Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat Photonics. 2020;14:109–14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (237) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return